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Abstract

The two-player Iterated Prisoner’s Dilemma game is a model for
both sentient and evolutionary behaviors, especially including the
emergence of cooperation. It is generally assumed that there
exists no simple ultimatum strategy whereby one player can en-
force a unilateral claim to an unfair share of rewards. Here, we
show that such strategies unexpectedly do exist. In particular,
a player X who is witting of these strategies can (i) deterministi-
cally set her opponent Y’s score, independently of his strategy or
response, or (ii) enforce an extortionate linear relation between
her and his scores. Against such a player, an evolutionary player’s
best response is to accede to the extortion. Only a player with
a theory of mind about his opponent can do better, in which case
Iterated Prisoner’s Dilemma is an Ultimatum Game.



Motivation

o Iterated Prisoner’s Dilemma(IPD)

— have long been touchstone models for elucidating
both sentient human behaviors, such as cartel pricing,
and Darwinian phenomena, such as the evolution of
cooperation.

— further establish IPD as foundational lore in fields as
diverse as political science and evolutionary biology.

This paper found a significant mathematical feature of IPD!
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Fig. 1. (A) Single play of PD. Players X (blue) and Y (red) each choose to cooperate (c) or defect (d) with respective payoffs R, T, S, or P as shown (along with
the most common numerical values). (B) IPD, where the same two players play arbitrarily many times; each has a strategy based on a finite memory of the
previous plays. (C) Case of two memory-one players. Each player's strategy is a vector of four probabilities (of cooperation), conditioned on the four outcomes

of the previous move.



Methods

« Markov transition matrix M(p,q)

g p(l=-q) I-p)a (1-p)(1—aq)
p2gs p2(l1—gq3) (1—p2)gz (1—p2)(1 —gq3)
paq2  pal ( Jg2 (1 —=p3)(1 —q2)
| Paqs pa(l—qa) (1—pa)ga (1 —pa)(1 —q4) |

Because M has a unit eigenvalue, the matrix M' =M -1 is
singular, with thus zero determinant. The stationary vector v of
the Markov matrix, or any vector proportional to it, satisfies

vM=vl, or vVM' = 0. [1]

Cramer’s rule, applied totfie matrix M’, is

Adj(M")M’ = det(M/)I = 0, 2]

where Adj(M’) is the adjugate matrix (also known as the classical
adjoint or, as in high-school algebra, the “matrix of minors”). Eq.
2 implies that every row of Adj(M’) is proportional to v.
Choosing the fourth row, we see that the components of v are
(up to a sign) the determinants of the 3 X 3 matrices formed from
the first three columns of M’, leaving out each one of the four
rows in turn. These determinants are unchanged if we add the
first column of M’ into the second and third columns.



Methods (cont.)
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X’s payoff matrix is Sy = (R,S,7,P), whereas Y’s is
Sy = (R, T,S,P). In the stationary state, their respective scores
are then

_Vv-S¢ _D(p,q,Sx)
v-1  D(p,q,1)

v-Sy D(p,q,Sy)

Y781 T Dlpa1)

Sy

[5]

Because the scores s in Eq. 5 depend linearly on their corre-
sponding payoff matrices S, the same is true for any linear
combination of scores, giving

D(p,q,aSx + Sy +v1)
D(p,q,1)

It is Eq. 6 that now allows much mischief, because both X and Y
have the possibility of choosing unilateral strategies that will
make the determinant in the numerator vanish. That is, if X
chooses a strategy that satisfies p=aSy +pSy +v1, or if Y
chooses a strategy with q = aSy + pSy + y1, then the deter-
minant vanishes and a linear relation between the two scores,

asy + Psy +v = [6]

asy + Psy +y =0 [7]

will be enforced. We call these zero-determinant (ZD) strategies.




Results 1
« X Unilaterally Sets Y’s Score. p = Sy + vyl

pi(T=P)—=(1+ps4)(T—R)

P2 = R—P
_ (1=p)(P=5) + pu(R=S)
P R—P '
sy — A=P1)P PR (9]

(1-p1) +p4

All PD games satisfy 7> R > P > §. By inspection, Eq. 8 then has
feasible solutions whenever p; is close to (but <) 1 and py4 is close
to (but >) 0. In that case, p; 1s close to (but <) 1 and p3 1s close to
(but >) zero. Now also by inspection of Eq. 9, a weighted average
of P and R with weights (1 —p1) and ps4, we see that all scores
P < sy < R|(and no others) can be forced by X. That is, X can set
Y’s score to any value in the range from the mutual non-
cooperation score to the mutual cooperation score.




Results 2

« X Tries to Set Her Own Score. p = aSy + y1

(14ps)(R=S) —p1(P=S)

P2 = R—P 21 101
_ =(A=p)(T=P)=ps(T-R) _,
P3 R—P =

This strategy has only one feasible point, the singular strategy
p=(1,1,0,0), “always cooperate or never cooperate.” Thus, X
cannot unilaterally set her own score in IPD.



Results 3

e X Demand_s and Gets an Extortionate Share.

P = ¢[(Sx —P1) —x(Sy — P1)], [11]

where y > 1 is the extortion factor. Solving these four equations

for the p’s gives
PsSg R_P

P1= l—d)(x—l)m

— T-P
if ¢ = 0, produces only the P2 = l—d)(l —+ xm)
singular strategy (1,1,0,0)

T-P
P3 = ¢’(I+m)

ps=0
Evidently, feasible strategies exist for any y and sufficiently small
¢. It is easy to check that the allowed range of ¢ is

(P-5)

0<b< gy T=pPy

[13]



Under the extortionate strategy, X’s score depends on Y's
strategy q, and both are maximized when Y fully cooperates, with
q=(1,1,1,1). If Y decides (or evolves) to maximize his score by
cooperating fully, then X’s score under this strategy is

~ P(T—R) + y[R(T—S)—P(T —R)]
e (T—R) + x(R=S) |

The above discussion can be made more concrete by special-
izing to the conventional IPD values (5,3,1,0); then, Eq. 12
becomes

P=[1-2¢(x—1).1-d(4x+1),d(x +4),0]. [15]

a solution that 1s both feasible and extortionate for
O<od < (4 + 1)'1_ X’s and Y’s best respective scores are

2+ 13y 12 + 3y

213y YT i3y [16]

Sy =



2413y 12+3
243y YT 243y

Sy =

&

With y>1, X’s score is always greater than the mutual co-
operation value of 3, and Y’s is always less. X’s limiting score
as y — oo is 13/3. However, in that limit, Y’s score is always 1,
so there is no incentive for him to cooperate. X’s greed is thus
limited by the necessity of providing some incentive to Y. The
value of ¢ is irrelevant, except that singular cases (where
strategies result in infinitely long “duels”) are more likely at
its extreme values. By way of concreteness, the strategy for X
that enforces an extortion factor 3 and sets ¢ at its midpoint

value is p = (%%27—6 [}), with best scores about sy = 3.73 and

sy = 1.91.

In the special case y = 1, implying fairness, and ¢ = 1/5 (one
of its limit values), Eq. 15 reduces to the strategy (1,0,1.0),
which is the well-known tit-for-tat (TFT) strategy (7). Knowing
only TFT among ZD strategies, one might have thought that
strategies where X links her score deterministically to Y must
always be symmetric. hence fair. with X and Y rewarded equally.

The existence of the general ZD strategy shows this not to be
the case.
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Results 4

Extortionate Strategy Against an Evolutionary Player.
— Y is an evolutionary player: adjusts his strategy g to maximize
his score S_Y.

— Y has a theory of mind about X: Y imputes to X an independent
strategy, and the ability to alter it in response to his actions

 Against X’s fixed extortionate ZD strategy, a particularly
simple evolutionary strategy for Y, close to if not exactly Dar-
winian, is for him to make successive small adjustments in q and
thus climb the gradient in sy. [We note that true Darwinian
evolution of a trait with multiple loci is, in a population, not
strictly “evolutionary” in our loose sense (14)].

Because Y may start out with a fully noncooperative strategy
qo = (0,0,0,0), it is in X’s interest that her extortionate strategy
yield a positive gradient for Y’s cooperation at this value of q.
That gradient is readily calculated as

oy
oq

(T-5)(S + T—ZP)). .

= (0,0,0,
. ( D P=8) + AT -P)
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Fig. 3. Evolution of X's score (blue) and Y’'s score (red) in 10 instances.
X plays a fixed extortionate strategy with extortion factor y = 5. Y evolves
by making small steps in a gradient direction that increases his score.
The 10 instances show different choices for the weights that Y as-
signs to different components of the gradient, i.e.,, how easily he can
evolve along each. In all cases, X achieves her maximum possible (extor-
tionate) score.



Discussion



The extortionate ZD strategies have the peculiar property of
sharply distinguishing between ‘“sentient” players, who have
a theory of mind about their opponents, and “evolutionary”
players, who may be arbitrarily good at exploring a fitness
landscape (either locally or globally), but who have no theory of
mind. The distinction does not depend on the details of any
particular theory of mind, but only on Y’s ability to impute to X
an ability to alter her strategy.

If X alone is witting of ZD strategies, then IPD reduces to one
of two cases, depending on whether Y has a theory of mind. If Y
has a theory of mind, then IPD is simply an ultimatum game (15,
16), where X proposes an unfair division and Y can either accept
or reject the proposal. If he does not (or if, equivalently, X has
fixed her strategy and then gone to lunch), then the game is di-
lemma-free for Y. He can maximize his own score only by giving
X even more; there is no benefit to him in defecting.

If X and Y are both witting of ZD, then they may choose to

negotiate to each set the other’s score to the maximum co-
operative value. Unlike naive PD, there is no advantage in de-
fection, because neither can affect his or her own score and each
can punish any irrational defection by the other. Nor is this
equivalent to the classical TFT strategy (7), which produces in-
determinate scores if played by both players.



Discussion(cont.)

To summarize, player X, witting of ZD strategies, sees IPD as
a very different game from how it is conventionally viewed. She
chooses an extortion factor y, say 3, and commences play. Now,
if she thinks that Y has no theory of mind about her (13) (e.g.,
he is an evolutionary player), then she should go to lunch
leaving her fixed strategy mindlessly in place. Y’s evolution will
bestow a disproportionate reward on her. However, if she
imputes to Y a theory of mind about herself, then she should
remain engaged and watch for evidence of Y’s refusing the ul-
timatum (e.g., lack of evolution favorable to both). If she finds
such evidence, then her options are those of the ultimatum
game (16). For examlple, she may reduce the value of y, perhaps
to its “fair” value of 1.

Now consider Y’s perspective, if he has a theory of mind about
X. His only alternative to accepting positive, but meager, rewards
i1s to refuse them, hurting both himself and X. He does this in the
hope that X will eventually reduce her extortion factor. How-
ever, if she has gone to lunch, then his resistance is futile.

It 1s worth contemplating that, though an evolutionary player
Y i1s so easily beaten within the confines of the IPD game, it is
exactly evolution, on the hugely larger canvas of DNA-based life,
that ultimately has produced X, the player with the mind.
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