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Horizontally and Vertically
Partitioned Data
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Fig. 1. Two basic scenarios for distributed data: instance-distributed (left) and
attribute-distributed (right). In the instance-distributed scenario, each agent (A,
B, and C) observes a subset of the instances, with complete information on all
attributes; alternatively, in the attribute-distributed scenario, each agent observes
all the instances, with a subset of attributes.
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Fig. 2. Comparison between non-collaborative training (left) and collaborative

training (right). For|

non-collaborative training|

individual estimators ( f;, f» and

f3) are trained locally and fixed, and no agents receives information from other

agents. Alternatively, for

collaborative training

, every agent can get feedback

from the fusion center/other agents, and the individual estimators are updated
based on external information, evolving as the training algorithm proceeds.



Algorithms



1. Voting/Averaging

« Theory: Naive Bayes assumption (conditional
iIndependent)

p(x |[H)x p(H)  p(x |H) =[] p(x; | H)
p(x) ’ j=1
— Even though the probabilities may be estimated wrongly, their
ranking is preserved [1].

o Attribute ensembles algorithm [2]

— (local predictor): each local site builds a predictor (decision trees, neural
networks) that predicts the target attribute from the values of its local
attribute.

— (global prediction): Each local site applies its local predictor to each new
records and transmits its prediction to the central site, where the
predictions are averaged (for regression), or used as votes for the target
class label, with the plurality winning.
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2. Meta-Learning

» Meta-data: data about data

 Integrate predictions of individual estimators by taking
their predictions as a new training set (hierarchical
training scheme)
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Figure 1: An arbiter and a combiner with two classifiers.

[3] P.K. Chan, S.J. Stolfo, Learning arbiter and combiner trees from partitioned data for scaling machine
learning, Proceedings of the 1st International Conference on KDDM, AAAI Press, 1995.
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3. Residual refitting

Attribute-distributed learning: models,
limits, and algorithms

Zheng, Haipeng, Sanjeev R. Kulkarni, and H.
Vincent Poor, /EEE Transactions on Signal
Processing , 2011



Preliminaries

* Boosting: Boosting is based on the question posed
by Michael Kearns in 1988: Can a set of weak
learners create a single strong learner? A weak
learner is defined to be a classifier which is only
slightly correlated with the true classification (it can
label examples better than random guessing). In
contrast, a strong learner is a classifier that is
arbitrarily well-correlated with the true classification.



The boosting algorithms can be seen as functional gradi-
ent descent techniques. The task is to estimate the function
F :R¢ — R, minimizing an expected cost

E[C(Y, F(X))], C.):RxR—-RT (1)
based on data (¥;, X;) (i = 1.....n).

d-dimensional predictor variable. The cost function C(-,-) is
assumed to be smooth and convex in the second argument, to
ensure that the gradient method works well. The most promi-
nent examples are

C(y. f) =exp(yf) with y € {—1, 1}: AdaBoost cost function,
C(y, f) =log,(1 +exp(—2yf)) with y € {—1, 1}: LogitBoost
cost function, (2)
C(y, f)=(y— f)zﬁ with y € Ror € {—1, 1}: L>Boost
cost function.

The population minimizers of (1) are then (Friedman et al.
2000)

Fix)= llu:lg(

P[Y = 1|X = x] )
2

PlY =—1|X =x]
for AdaBoost and LogitBoost cost, (3)
F(x)=E[Y|X =x] for L;Boostcost.




Preliminaries(cont.)

e L2 Boosting: L2 boosting is nothing else than

repeated least squares fitting of residuals
(Friedman 2001).

Step I (initialization). Follow step 1 of the generic functional
gradient descent, using a least squares fit (maybe including
some regularization). N

Step 2. Computeresiduals U; = Y; — F,, (X;) (i =1, ..., n) and
fit the real-valued learner to the current residuals by (regular-
1zed) least squares as in step 2 of the generic functional gradient
descent; the fit 1s denoted by _,r‘ﬁ'mH (+).

Update

Fns1() = Fu () + fus1().

Step 3 (iteration). Increase iteration index m by 1, and repeat
step 2.



Preliminaries(cont.)

e The additive models
Y:@+ifj(Xj)+€a

— f: smooth (nonparametric) functions

Algorithm 9.1 The Backfitting Algorithm for Additive Models.

1. Initialize: & = & 27 v, f; = 0, Vi, J.

2. Cycle: j=1,2,...,p,...,1,2,....p,...,

f;.- — S {?f-i-_d_ka(m-i.k)}{\r ;
k#j

,

N
- 1 -
.fj — fj — ? E fj(.’i'l.-g_j).
=1

until the functions f} change less than a prespecified threshold.



Problem statement

Yi = P(Ti1, Ti2s - - -, Ting) + Wi
Suppose were are £ agems anu one rusion cemer. cach of the
agents has only limited access to certain attributes. As defined in
the introduction, A4; (j = 1,..., D) denotes the set of attributes
accessible by agent j, and A = UL, A;, assuming that |A] =
M. For centralized data, the set of possible estimators is given

by
’H:{f: Hsk—_}[m},

ke A

and for each agent j, the set is reduced to

heA,

ally, we need to solve the following problem:

min _ E [(¢(x) = p(f1(X);..., [D(X)?] | )

where
ped ={f:RP =R} (10)



Problem statement (cont.)

If we assume that the ensemble estimator 1s of additive form

then problem (9) can be reduced to a simpler form

min E
Ji€EH;

D
Z fj(}{),
i=1

D
H(x) =Y [i(x)
g=1

2

(11)

(12)

In practice, if we have only finite, noisy data, it is impossible to
exactly solve (12). Instead, we use the training error as a proxy
of the objective specified in (12). Then, we have the problem

min
FEH; _

N

Y =
1=1

5 2
> fixi)
71=1

of minimizing the mean square training error.

(13)



Algorithm 1:lterative Conditional
Expectation Projection

e Minimizers
A (%) = Efp(x) - S2@)|o ke Al (14)
and
D) = E[px) — AP X)|ar,k € Ao (15)
* Or explicitly

h(zr) =E[¢(z1,22) = fa(w2)|1] (20)
fa(@2) =E[¢(z1,22) — fi(w1)|z2]. (21)



« Solve the finite, noisy data case (Residual refitting)

Algorithm 1: Prototype Residual-Refitting Algorithm
. : N

L Fy(x) = iz Ui

2 fori=1,...,T do

3 ()t—y{—ﬂ (%), Ve € T

4 ”(x)xt—drgnunfeﬁm} Z;- (J’E” f(x:))?
5 F(x)—F-1(x) + fi(x)
6 end

7 1% =Y ecmn fP), €L, D}

Algorithm 2: [, Boosting Algorithm

I Fo(x) — % Eall Yi

2 fort=1,...,T do

3 ( ) yi — Fi1(x;),Vi €T

4 f (f)(x) — argmin fcyy E:’_l (3’}?) f (Xi))?'
5 R(x)—=Foa®) + /M)

6 end




Algorithm 2: greedy algorithm

 the fusion center sends the residual to all the agents,
each of which finds a local optimal estimator based on its
own limited set of functions , and then the fusion center
chooses the agent that generates the estimator with the
smallest training error to project the current residual.

One pmslble choice is that we replace H; in Line 4 of Algo-

rithm 1 by U , H;j, or equivalently, that we redefine C'(¢) as
follows:

2
C'(t) = argmin 4O _ ’,(-f) i 23
(®)= argn D};(Jﬁ e) e

where

f( )(X) = arg mmz (""f.:, - f (X.,;))E. (24)

feH;

_,L"_



Algorithm 3: Parallel Gradient Descent

New optimization problem

N D 2
1min Ny — Z 3 f(x: .
F1EH;.5; Yi B fi(xi)

i=1 7=1

Since f; € H; implies 3 f; € H; (due to the linearity of H ),
the set of functions over which we search in (25) does not ex-
pand relative to (13) so that the two problems are equivalent.

Define the vector y as [y]; = y;. the vector f; as [f;]; = f;(x;)
the vector 3 as [(]; = (3; and the matrix F € RV*P as F =
[f1,...,fp]. Then if the individual estimator of each agent is

Solution:

— Alternating update weights (at fusion center) and

functions (at each agent)



Two-stage optimization

min|ly — A

'a; — (FTF)_l FT}'

LB.F)=|ly-FB|? =y A-FEFTF)~F)y.



T\ —1gT
%E%y FIF'F)"F'y (32)
where

= {F S RN*D . Eifj c Hj:. S.t. [F]ij = fj(}ii) "‘?’E,_j}:.
(33)
Solving (32) requires an iterative algorithm since the training
constraint F is not explicit. A gradient descent (in this case, it
is actually hill climbing) algorithm to optimize (32) requires an
explicit expression for the gradient of n = y' F(F'F)~'Fly
with respect to F', which is

-l

Note that the gradient for F is 'ill’l'lplj.-’ the current training
residual R = y — Ff3, reweighted [by ﬁ for the jth column.




Algorithm 3: Parallel Algorithm

LY —argmingey, YL (4 = f(xi))2, V)
2 [Flij — fi(x1), Vi, j

3 B = (FTF)~'Fy

4 fort=1,...,7 do

5 | AF—(y - Fp)3

6 6 — BackSearch(a, 3, F, AF)

7 | F—F + §AF
8

9

fustomcenter

. N
f:f —arg H]lﬂfE'Hj Zé:] [F]U _ f(xé))z each agent

Flij — f;(x:)
10 | B = (FTF)lFy
11 end

the parallel approach, by using individual residual information
holistically, performs the best in terms of generalization.




Algorithm 4: Beyond Gradient Descent

A revised version of the gradient descent algorithm based
on this idea will use a different searching direction for (34) as
follows:

(y —FEBW@B)T. (36)

The reweighting function W ¢ RY” — R" should emphasize
components of 3 that are relatively large in absolute value and
suppress components of 3 that are closer to zero. There are many
choices of such functions, and we could even use a clustering
algorithm to distinguish significant agents and irrelevant agents.
Here, for simplicity, we consider the power function

W(B)]; = sen((B1,)I18]:1" (37)

where p > 1 controls the preference to larger values of coeffi-
cients. When p = 1, the gradient reduces to the original one. It
is thus interesting to investigate the influence of V' on the gen-
eralization error of Algorithm 3, by replacing Line 5 by (36).

emphasize more promising agents further improves the
capability of eliminating irrelevant attributes




Comparison Among Algorithms
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Fig. 4. Comparison between the convergence of the parallel algorithm, the
greedy algorithm and Simple Iterative Projection for the Friedman-1 dataset with
5 irrelevant attributes. The parallel algorithm is least susceptible to overtraining
than the greedy algorithm and Simple Iterative Projection, and the training error
curve for the parallel algorithm parallels its test error curve with a small gap
between them. Yet for the greedy algorithm and Simple Iterative Projection,
though the training errors converge rapidly, they do not correctly reflect the test
errors of the ensemble estimator, with large gaps and opposite trends.



Distributed PCA on vertically
partitioned data

 Guo, Yue-Fel, et al. "A covariance-free iterative
algorithm for distributed principal component
analysis on vertically partitioned data." Pattern
Recognition 45.3 (2012): 1211-1219.



Problem statement

We assume that the global data matrix X consists of m samples
and d dimensions. The sample covariance matrix C is:

1 <& _ _
C= —Z{x,-—x}f{xf—x)‘ (1)
n 1=1
The principal components are obtained by solving the follow-
ing eigenvalue problem:

Cax=Aax, (2)

where A i1s a diagonal matrix whose diagonal elements 4, = 4,
> ... = 44 are the eigenvalues of C, and z; are the eigenvectors of
the sample covariance matrix C corresponding to »;, i=1, 2, ... ,d.
The first p eigenvectors are regarded as the first p principal
components.



Problem statement (cont.)

In the vertical data partition setting, each site contains all the
data samples but each sample is represented by only a subset of
the attributes. Let the data matrix X be partitioned into s subsets
as X =(X1,Xo,...,X;).,X; is m x d; sub-matrices of X, i=1,..., s,
with d = Y] _ , d;. The global covariance matrix is then defined as

1

— —_— _T —_— ¥
c_m(x 1xX)(X-1xX)
— %I:X]—rl by E] ..... X5—1. >, ES}T{X'l—-l x il, ....X5—1 = Eg]
Yly, ... Yly,
— | ... 3)
"yly, ... Yy,

where Y; =X,—1 x X;, X; is the mean of the data subset i with d;
dimensions of the sample attributes, 1 <i<s, and 1 is a unit
column vector of size m.



Solution

Step 1: Find the eigenvector corresponding to the
maximum eigenvalue using gradient ascend method.

alCax
o =arg m;"lx{ po } (3)

The gradient ascend method [24,25] can be used to calculate the
first principal component a;.
We further define the Rayleigh quotient [26] as

ra) = : (6)

The gradient of the Rayleigh quotient r(x) is then defined as
2
Ar(a) = m(fm—r{m}rx]
o Coa—kat, (7)

where k is a scalar. The gradient iterative equation is further
defined as

o= o+ pAr(e), (8)




We denote the initial vector

Distributed calculating the gradient ascent

P
P
a=1 .
Ps
where ¢; is the d;-dimensional column vector, i=1,...,s. The
iterative equation (10) can be represented as
P P YiY: YY, Y.Y P
‘F:z _ ‘F:’z i Y}Y, Y3Y, Y, (P:'g 08)
P Ps Y[Y, YY, Y Y, Ps
This is equivalent to
f 5
@1 =@, +uY1 > Yip,
i=1
T 5
=@, +uY Yip;
) 92=0>+H g; i 29)

@5 = Qs +uY; Y Yip,

i=1

\



e Step 2: Find the eigenvector corresponding to the
maximum eigenvalue in the orthogonal complement

space of \alpha_1.

e Algorithm flow: see in paper.
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