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Problem statement 
• How to compute maximum-likelihood estimates 

from incomplete data ? 
• How when in Bayesian frameworks? 
• What’s the relation between EM/VB and 

gradient-based methods? 
• How to deal with the streaming and large-scale 

data? 



Incomplete data 
 
 
 
 
 
• From: P. Dempstern, “Maximum Likelihood from Incomplete Data 

via the EM Algorithm”, 1977 
 

• It also refers to the latent variable. 



A Recursive Procedure (Titterington,1984) 



Alternatively…(Titterington,1984) 
• Problem 

 
 

 
• Modification 

– Fisher information matrix with complete observation 
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Standard EM algorithm 



Connection between EM and gradient-based 
methods(Titterington,1984) 

By Taylor expansion 



Solve the M-step by Newton’s method(lange,1995) 

 
 



Online EM: Sato,2000 
• Derived for general (canonical) Exponential family model 

with hidden variables(EFH models) 



Sato2000, cont. 
• On-line EM with the discount factor 
• From free energy aspect 



Sato2000,Cont. 



On-line expectation–maximization algorithm for 
latent data models, Cappe, 2009 



Cappe2009, cont. 
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A Bridge from EM to VB: Free Energy 

• A view of the EM algorithm that justifies incremental, sparse, and other 
variants, Neal & Hinton, 1993,1998 

• Standard EM 
 
 
 

• Variational free energy 
 
 
 
 

 



(Neal & Hinton, 1998) cont. 

 
 

 
 
 
 



Incremental  

 
 



Incremental  

 
 



Outline 
• Problem statement 
• A Recursive Procedure 
• Recursive Expectation Maximum algorithm 

– Titterington,1984 
– lange,1995 
– Sato,2000 
– Cappe, 2009 

• A Bridge from EM to VB: Free Energy 
– Neal & Hinton, 1993,1998 

• Recursive Variational Bayes 
– Sato,2000 
– Hoffman, Blei,2010,2011 



ML vs. Bayesian 
• There are three main problems with ML learning.  

– Overfit : First, it produces a model that overfits the data and subsequently 
have suboptimal generalization performance.  

– Model selection: it cannot be used to learn the structure of the graph, since 
more complicated graphs assign a higher likelihood to the data.  

– Tractability : Third, it is computationally tractable only for a small class of 
models. 

• The Bayesian framework in principle, a solution to the first 
two problems. 
– one considers an ensemble of models, characterized by a probability 

distribution over all possible parameter values and structures 
– complex models are effectively penalized by being assigned a lower posterior 

probability 

• Unfortunately,  
– computations in the Bayesian framework can seldom be performed exactly, 

due to the need to integrate over models. 
– Approximations therefore must be made, MCMC, Laplace approximation. 



Online Model Selection Based on the 
Variational Bayes (sato2001) 
• Derivation: similar to online EM(sato2000). 



Stochastic Variational Inference 
(Hoffman,Blei,2011,2013) 
• However, when the posterior of latent variable is 

intractable, the above approaches cannot be 
applied. 



Complete conditionals (exponential family) 
 

 
• Conjugacy relationship 



• Objective function(ELBO) 
 
 
 
 
 

• Mean field  



Derive the coordinate update for the parameter 

• rewrite the objective 
 
 
 
 

• Take gradient 
 
 
 

 



Same for local parameter:  

Standard VB: Coordinate ascent mean-field variational inference 



VB update based on Natural Gradient 

• the classical gradient(based on Euclidean distance metric) 
 
 
 

• Natural gradients (measure of dissimilarity: symmetrized KL 
divergence) 
 
 
 
 



 
 
 
 
 
 
 
 
 

• The classical coordinate ascent algorithm can thus be 
interpreted as a projected natural gradient algorithm. 
 







Extensions 
• Minibatches. 

 
 

• Empirical Bayes estimation of hyperparameters. 



Example: Topic Models 





Thanks! 
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