Recursive parameter estimation
and inference with incomplete
data — Recursive EM & VB
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Problem statement

 How to compute maximum-likelihood estimates
from incomplete data ?

« How when in Bayesian frameworks?

« \What's the relation between EM/VB and
gradient-based methods?

 How to deal with the streaming and large-scale
data?



Incomplete data

a

The term ““incomplete data” in its general form implies the existence of two sample spaces
% and & and a many-one mapping from Z to %. The observed data y are a realization from %
The corresponding x in £ is not observed directly, but only indirectly through y. More
specifically, we assume there is a mapping x—y(x) from Z to %, and that x is known only to
lie in Z'(y), the subset of Z determined by the equation y = y(x), where y is the observed data.
We refer to x as the complete data even though in certain examples x includes what are
traditionally called parameters.

 From: P. Dempstern, “Maximum Likelihood from Incomplete Data
via the EM Algorithm”, 1977
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» |t also refers to the latent variable.




A Recursive Procedure (Titterington,1984)

Suppose y;,»s,... are independent observations, each with underlying probability density
function (p.d.f.) g(» 10 ), where 8 €O C R®, for some s. Let S(y,0) denote the vector of
scores. That is,

0
Si(y,0)= —logg(y10), j=1,...,s.
30;

Let D?*(y,0) denote the matrix of second derivatives of log g(y 10 ) and let /() denote the
Fisher information matrix corresponding to one observation. It is assumed that all derivatives
and expected values exist and that

EgS(v.0) = js(yﬁ)g(vlﬂ)dy=0;
I(8) = Eg{S(»,0)ST(»,0)}=—EgD*(»,0).

Consider the recursion
Okr1 = 0% +{kI(0;)} ™" S(i+1,0k), k=0,1,... (2)

which is recognizable as a stochastic approximation procedure. Under regularity conditions over
and above those alluded to above, as k — oo,

V(%) (85— 89) > N(0, 1(85)™), €)

in distribution, where @y denotes the true parameter value. This result appears in Sacks (1958),
Fabian (1968), Nevel’son and Has’minskii (1973, Chapter 8) and Fabian (1978).



Alternatively...(Titterington,1984)

* Problem

L

As we shall see in some of the Examples in Section 3, complications may arise in applying re-
cursions (2) and (6), in the computation and inversion, in the multiparameter case, of I(0%).
Numerical integration is often necessary and the fact that we are dealing with incomplete data
will add to the complications. Suppose, with reference to (2), we write

* Modification
— Fisher information matrix with complete observation

i

0.1 =0, +{RI.(0)}" S(Vk+1,0x), k=0,1,...

Theorem 1
Given conditions corresponding to those above and provided 21(00)1,(00) ! >1,

V(&) @k —00) > MO, 1,(80) * 1(60)f 20(60) I.(80) ™" —1})
in distribution as k = oo, where {gk } is defined by (8) or (9).



Outline

e Recursive Expectation Maximum algorithm



Standard EM algorithm

Suppose Xj,...,x, rtepresent n independent complete observations, corresponding to
¥1, - - -» ¥Yn. Define

0(010)= Eﬂ*{ Y logflx;| @ ).|y1,...,yn}.

i=1

The EM algorithm generates a sequence { @ ,, } of parameter estimates by repeating the follow-
ing double step.

E-step: Evaluate Q(0 | 0,,).
M-step: Choose 0 = 0,4, to maximize Q( 0| 0,,).



Connection between EM and gradient-based
methods(Titterington,1984)

At stage k + 1, with current estimate ﬁk, define
Lk+1(9)=Eﬁk{logf(xk+1 10) | y+1} +Li(0). (12)

Choose 0= 0, to maximize Li,1(0 ). Finally, estimate 0, by 9,,.

Theorem 2.| Approximately,| given appropriate regularity, recursion (12) can be written as
Ocsr = O +H{(k+ 1) I( 0x)} 7" SOia41, 81),
By Taylor expansion

Theorem 3. In|exponential family| models in which| @ is the expected value of the sufficient
statistic, the recursion is exact.

For the exponential family models considered in Theorem 3 the recursions have particularly
simple forms, reminiscent of Example 1.1. Recursion (2) is

Iﬂ;:+1 = GE +{kf( 0:)}-1 Io( 9:) {E(t:ﬂ | Yk+1> 9:)_ B;}
Recursion (8) is
0rs1 = 0F + 57 {E(they | Vi1, 0%)— 0% ).



Solve the M-step by Newton’s method(lange,1995)

gn+tl = gn — de(Bnlﬂn)-l dll}Q(ﬁnw.n)
= " — de(ﬂnlﬂn)_l dL(ﬂ")

In equation (1) the operators d'° and d? take first and second partial derivatives
respectively with respect to the first variable of Q. The column vector dL(f) is
the score of the log-likelihood L(#). Because L(8) — Q(f|6") has its minimum at
6 = 0", the equality d'°Q(6"|6") = dL(6™) holds whenever 6" is an interior point of
the parameter domain (Dempster ef al., 1977). We shall refer to algorithm (1) as
the EM gradient algorithm.



Online EM: Sato,2000

» Derived for general (canonical) Exponential family model
with hidden variables(EFH models)

den variables (EFH models)[1]. An EFH model for

an N-dimensional vector variable x = (. ....2 5 )?
is defined by a probability distribution,

P(x|6) = /n’z P(x.z|0), (1)
P(x.z|8) = explr(x.z) -6 +ry(x,z)— ¥(8)],
where z = (zy..... 37 )1 denotes an M-dimensional
vector hidden variable and 8 = (f;.....0xk ]1' de-

notes a set of model parameters called the natu-
ral parameter. A set of sufficient statistics is de-
noted by r(x.z) = (r(x.2).....rx(x.2z))*. An n-



Sato2000, cont.

e On-line EM with the discount factor
 From free energy aspect

up to now. A discounted free energy for X{r} is
defined by

FMQ{T}. 81X{7}) = n( Z(H As ) (6)

t—=1 Ne—t+1
/‘(fg;[ Q(z(t)) log(P(x(t), z(t)]6)/Q(z(t)))

where a time dependent discount factor A(f) (0 <
Alt) < 1. ¢ = 2.3....) 18 introduced for forgetting
the earlier inaccurate estimator contributions. The
normalization constant n(7) 1s given by



Sato2000,Cont.

The recursive formula for ¢(7) 1s derived from the
above equations:

Ap(7) = ¢(7) — (7 — 1 10)
= n(7) (B, [x(x.2)|6(r — 1)] ~ o(7 ~ 1)),

The new estunator 8(7) 1s obtained by using (2),

OH
0(7) = 8(0(7) = "5 gy | (1)
|  (OL(Bx(7))
— n(n) /@> (EJL[EWJHX[’T))) |
— ”[T. \6)9 (f)d_, (,bli’."—l:'

" (EJL[Q[E?;|X T))) |¢J|:T_l:.' I:ll)

= n(7)(Vie(r 1))~
[




On-line expectation—maximization algorithm for
latent data models, Cappe, 2009

On41(0) = 0 (0) + 41 (E [0g{ f(Xn11:0) HYnp1]— Cn(0)).

Assumption 1.

(a) The complete-data likelihood is of |[1‘IE form

f(x:0) = h(x) exp{ —v(9) + (S| 6(O)]}. (11)

(b) The function
- def
5(y:0) = Eg[S(X)|Y =] (12)
is well defined for all (y,0) € ) x ©.
(c) There 1s a convex open subset S C R4, which is such that
(1) forallseS,(y,0)eY xBOand~e€[0,1), (1 —v)s+~vs(y;#) €S and
(i1) for any s € S, the function 8+ I(s; 0) —def —(6) + (s, @(#)) has a unique global maxi-
mum over O denoted 6(s). 1.e.

A(s) def arg max{l(s:0)}. (13)
e



Cappe2009, cont.

Assumption | implies that the evaluation of Eg[log{ A(X:6)}|Y], and hence the E-step of the
EM algorithm reduces to the computation of the expected value Fg[ S(X)|Y] of the complete-data
sufficient statistic S(X). Indeed, the EM re-estimation functional Qg (Y].,:6) is then defined by

Qp (Y1:5:0) :g{n—l i E(YI-:H’):S}.

=1

The (k+ 1)th iteration of the (batch mode) EM algorithm may thus be expressed as
R

ékﬁ—l = {;{n_l Z E(Yi: ék)}.

i=1

In this setting, the proposed on-line EM algorithm takes the form

§n+l — §n + Yn+1 {E(Yn—l—l:gn) - §n}-

-~

Ons1=0(ns1).

takes care of this issue in the case of the on-line EM algorithm. As an additional comment
about assumption 1, note that we do not require that ¢ be a one-to-one mapping and hence the
complete-data model may also correspond to a|curved exponential family| where typically @ is
of much lower dimension than ¥(&) (see, for instance, Chung and Bohme (2005) and Cappé

L TATAT L 1 £
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* A Bridge from EM to VB: Free Energy



A Bridge from EM to VB: Free Energy

« A view of the EM algorithm that justifies incremental, sparse, and other
variants, Neal & Hinton, 1993,1998

« Standard EM
E Step: Compute a distribution P over the range of Y such

that P (y) = P(y| z, 601). (1)
M Step: Set 81 to the 6 that maximizes Hﬁ'f,_}[lc)g Py, z|0)].
» Variational free energy

F(P,0) = Egllog P(y, 2| 0)] + H(P) (2)

where H(P) = Hﬁ[lc}g P(y)] is the entropy of the distribution P. Note

Lemma 1 For a fized value of 8, there is a unique distribution, Py, thal
mazrimizes (P, 0), given by Py(y) = Plyl|z, 0). Furthermore, this P

varies continuously with 6.



(Neal & Hinton, 1998) cont.

Lemma 2 If P(y) = Ply|z, 0) = Pi(y) then F(P,0) = log P(z|8) = L(#).

Proor. If fj(_g;) = Ply|z, 0), then

Theorem 1 The ilerations given by (1) and by (5) are equivalent.

D)

E Step: Set P to the P that maximizes F'(P,00=1). }
(

M Step: Set ) to the 6 that maximizes F(fﬁj(:”: f).



Incremental

We can then write /7 in the form F{P,8) =Y. F;(F;,#), where

Fi(P,0) = B [log Plys, 2| 0)] + H(P,) (6)
E Step: Choose some data item, 7, to be updated. )

< t d=1) .o s .
Set .‘”_P-[- b~ f’?{-- ) for 7 # 1. (This takes no time).

. ; . . . . - . _
Set f’} ) to the P that maximizes I (P, 6U=1)),

given by P (y;) = Py; | =, 007).

M Step: Set #) to the # that maximizes F(PU),0), or,
equivalently, that maximizes Hﬁm[lug Py, z|6)].

Flach I step of the above algorithm requires looking at only a single
data item, but, as written, it appears that the M step requires looking at
all components of I?. This can be avoided in the common case where the

inferential import of the complete data can be summarized|by a vector of

suflicient statistics| that can be incrementally updated, as is The case with
models in thejexponential family. |




Incremental

E Step: Choose some data item, 1, l):} be updated.

L~ LI=1) 5 . i P :
Set -‘*‘{; ) — .-:{I- ) for 7 # 1. (This takes no time.)
Set ﬁf—'f] = I [si(yi, z)], for Pi(y;) = Py |z, U1,

Set 3(1) = 3(t-=1) _ 5(t=1) 4 50

1 1

M Step: Set ') to the # with maximum likelihood given s').

E Step: Select the next data item, 2, for updating.

.

1

Set 5t = Ex (si(yi, 2], for Pi(y;) = P(y; |z, 6V,

Set 31 = ~z0-1) 4 3

M Step: Set ' to the  with maximum likelihood given s'’),

where 0 < v < 1 is a decay constant.
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* Recursive Variational Bayes



ML vs. Bayesian

e There are three main problems with ML learning.

— Overfit : First, it produces a model that overfits the data and subsequently
have suboptimal generalization performance.

— Model selection: it cannot be used to learn the structure of the graph, since
more complicated graphs assign a higher likelihood to the data.

— Tractability : Third, it is computationally tractable only for a small class of
models.

e The Bayesian framework in principle, a solution to the first
two problems.

— one considers an ensemble of models, characterized by a probability
distribution over all possible parameter values and structures

— complex models are effectively penalized by being assigned a lower posterior
probability

 Unfortunately,

— computations in the Bayesian framework can seldom be performed exactly,
due to the need to integrate over models.

— Approximations therefore must be made, MCMC, Laplace approximation.



Online Model Selection Based on the
Variational Bayes (sato2001)

* Derivation: similar to online EM(sato2000).
Aax(t) = a(t) —a(t — 1)

1
Aa(T) = ;r;(r)(TE;[ r(X(7), Z(T) [{B) ex(z-1) |

+ oo — yo(t — l)),

= | 0P
0(t) = (0)ae—1) = ;—(ﬂ T—1),y

d Fuv
8

Ao(r) = %n(:)vg;ﬂ(w — D) | S K (D), (T — 1), D).




Stochastic Variational Inference
(Hoffman,Blei,2011,2013)

 However, when the posterior of latent variable is
iIntractable, the above approaches cannot be
applied.

o .—»”/ )
/“\
[ l—l-. Xn

N

Figure 2: A graphical model with observations x;.y, local hidden variables z;-x and global hidden
variables . The distribution of each observation x, only depends on its corresponding
local variable z, and the global variables (. (Though not pictured, each hidden variable z,,,
observation x,, and global variable p may be a collection of multiple random variables. )



The joint distribution factorizes into a global term and a product of local terms,

N
p(x,z, B o) = f-’(B o) lj[lp(xn«:-n | B)

Complete conditionals (exponential family)

p(Blx.2.0) = h(B)exp{ns (x.. 007+ (B) — (g (.2 @)}
p(znj | XnsZn,—js B) — h(znj) EKP{UE(H}:- in,—js B)Tr(:ﬂj) - “f(ﬂfi(v‘rn*;n.—j* B))}

e Conjugacy relationship
f)(v¥n-3¢1||3) — h(v“"n*:’-n) EKD{BTF(,TH.ZH) o f"E(B)}-

The prior distribution p(f3) must also be in an exponential familyj,

p(B) = h(B)exp{art(B) — ay(c)}. (5)

The sufficient statistics are 7() = (P, —ae¢(B)) and thus the hyperparameter ¢ has two components
o = (o, 0). The first component ¢ is a vector of the same dimension as 3; the second component
Oy 18 a scalar.

Ne(x,2,0) = (a1 + YN (20, Xn), 02 + N).



* Objective function(ELBO)
log p(x) =lo /p( - B)dzdp

— log | p(x 9(. )
—1:/;.(..« B)gﬂB)HB

(
o (5 [P2)
E

q(z,B)
> E,[logp(x.z,B)] —

2 L(q).

q[lﬂg*?(:-- B)]

e Mean field

q(z.p Il)]_[]_[rf Znj | Onj)-

n=1 j=

q(B| %) = h(B)exp{L t(B) —ag(h)}.
q(znj | Onj) = h(znj) exp{(h;ﬁ(*?nj) — ag(Onj) }-



Derive the coordinate update for the parameter )

* rewrite the objective
L(A) =Eg4[log p(B|x,2)] — E4[logg(P)] + const.
L(A) = Eq[ng(x,2, )] Vaag(A) =L Viag(R) +ag(2) + const
E,[1(B)] = Vzag(L).
 Take gradient

Vi L = Viag(A)(EyMg(x,z,0)] —A).



Same for local parameter: 0.

Vo, L = ?gnjuf(tbn i) (EgMe(xn, zn—j. B)] — Onj).

Standard VB: Coordinate ascent mean-field variational inference

. Initialize L) randomly.
repeat

for each local variational parameter ¢,; do

(£) .
Update Opj- Ou_j = Eq-:r—l] [ﬂg_j (‘1{”‘*'”-—45‘ B)]

end for

Update the global variational parameters, A" = E,o0Mg(zt:n,x1:n)].
until the ELBO converges

SR By




VB update based on Natural Gradient

e the classical gradient(based on Euclidean distance metric)

AUTD =0 4 pv, F(AD).

argmax f(L+dA) subject to ||dA||* < €
dh.

{

Natural gradients (measure of dissimilarity: symmetrized KL
divergence)

Vif(A) 2 GV ().

SYM 9 41\ _ T qg(B|r)
DZ (ML) =E; {lng J BT

ﬂ q(B|M)

s " . SVITL 7o = "
argmax f(A+dA) subject to D!{IL (A A+dA) <€
d



G(h) =By |(Valogq(B|1))(Vloga(B|2)T] .
A\ G(N)dh = DY (A A +d)).

G(1) =B, |(Vlogp(B|2))(Valog p(B[2)) ]

_E, :(r(B) —E,[1(B)]) (+(B) —E:h[f(B)])_}
— V%f.fg(;b)-

f‘f;.kf_’, — ED [T]g ('{ Z, UC.)] — .

ﬁo”jf-’- — E;',..D”__j [nf(l‘n- in,—js B)] o (bnj-

The classical coordinate ascent algorithm can thus be
Interpreted as a projected natural gradient algorithm.



L) 2 LOLO(L)).

L() =Eqllogp(B)] — Eqllogq(B)] + Zl’“ﬂ‘ﬂ(Eq[IU P(xn:zn | B)] — Eqllogg(za)])-

Now consider a variable that chooses an index of the data uniformly at random, / ~ Unif( 1
Define £;(A) to be the following random function of the variational parameters

Li(h) =

..... N).

E,[log p(B)] — E, [logq(B)]Jerax (Eq[log p(x1.z1|B) — E,[logg(zr)]).

e (41.47.0) -

(25)

where { f‘"‘”.zﬁ”’} are a data set formed by N replicates of observation x, and hidden variables z,

ne (.2, )=a+Nwmm@aJn

-~

ViLi=o+N- (Ey o lt(xi,2)], 1) — AD = Al=D 4o (5%_1(:—1})

= (1—- pr)kir_]} + prif-

M 2 0+ NEo, o) [(1 (xi.z). 1)




<

s

9o

. Initialize A(°) randomly.

. Set the step-size schedule p; appropriately.

repeat
Sample a data point x; uniformly from the data set.
Compute its local variational parameter,

N} (N
0=Eyne(x; sz )]

Compute intermediate global parameters as though x; is replicated N times,

g N) _(N)
= Etb[ng{x;; '13;; Ol

Update the current estimate of the global variational parameters,
}L[E} — (] — p;)}l.lzr_” +p;jl..

. until forever

Figure 4: Stochastic variational inference.

We set the step-size at iteration t as follows,

pr=(t+7)" "



Extensions

 Minibatches.

A® = (1 —p Al + % Y i

5

 Empirical Bayes estimation of hyperparameters.

o) ="V 4p, V£, WY 0,0l 7Y,



Example: Topic Models

o« ()

H.Q_.Q

( )—re

¥ 0 d *‘Zd:ﬂ, ﬂ;d,'n_. 3 k T]
N | -
D K
Var | Type Conditional Param | Relevant Expectations
Zdn | Multinomial | logBOg4 +10g By, Odn [Zf‘m] (bd”
0, | Dirichlet a+YN_ zan Ya | Ellogba] =" (va)— X5 ¥ (1a;)
B; | Dirichlet N+Yo 1 Tne1Zowan | M | EflogBu] =¥ (o) — Ly ¥ (M)




1: Initialize A(°) randomly.

2: Set the step-size schedule p; appropriately.

3: repeat

4:  Sample a document wy uniformly from the data set.
5 Initialize vz = 1, fork e {1,...,K}.

6 repeat

7 Forne {1,...,N} set

q)f'.;i'! o< EXP {E[logetﬂ'] + E[]OgBk.wm]} : ke {] .- K}

Set yg = +Y, Oan.
. until local parameters ¢4, and yy converge.
10:  Fork e {l,...,K} setintermediate topics

N

}'-k =Nn+D Z [I}ﬁn,wdn-
n=I

SET }L{E} — (] = p!‘)ll:i'—” ‘|_ p;i.

12: until forever

[a—
o

Figure 6: Stochastic variational inference for LDA. The relevant expectations for each update are
found in Figure 5.



Thanks!
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