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The regression problem

Consider the case when we need to fit the standard linear

regression model [14]
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p: attributes
n: sample size
K>=3: agencies

Least-squares:

B=(X"X)"'X"y.




The regression problem (con't)

ExaMPLE 1. If K = 3 agencies are involved, and if agency
Ay knows xy,X2,X3, As knows xX4,Xs5.Xg. and Az knows
X7,X58,Xqg. T.-'lE?l dl = dg = da = 3, Il = {1,2,3} Ig =
{4,5,6} and Is = {7,8,9}. Also,
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X = [Kl XKaXg Xy XX X7 X5 Xg]
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« Vertically partitioned data

* Not share summary statistics

« Have alead role

« Align the records

* The attribute sets do not overlap




Preliminaries: Powell's methods

« Conjugate direction methods

e a derivative-free numerical minimization method that
solves the multidimensional minimization problem by
solving a series of 1-dimesional line minimization

prObIemS- Initialization : Select an arbitrary orthogonal basis’ for
RP: S[”;s“},.;.js{l} € RP. Also pick an arbitrary
starting point 3 € RP.

Iteration : Repeat the following block of steps p times.
e Set 3 «— §
e Fori=1,2,....p:
— Find § that minimizes f(3 + ds'?).
— Set 3 «— 3+ 5s().
e Fori=1,2....(p—1): Set s — (it
Set s — 3 — 3.
— Find ¢ that minimizes f(3 + 55[1”}).

— Set 3« B+ 6sP. More details...




Preliminaries: Secure Summation

K>2
calculate a summation: v =37 v;

Choose mto be a very Iarge number known to
all the agencies such that vis known to lie in the
range [0, m).

Agency 1 generates a random number R,
chosen uniformly from [0, m).



Agency j receives

j—1
sj—1 = (R+ Z'US) mod m,
s=1
of v1,...,v;_1. Agency j then cBmputes and passes on to

Agency j +1
J
s; = (8j—1 +v;) mod m = (R + vas) mod m.

s=1

Finally, agency K adds vk to sx—1(mod m), and sends
the result sk to agency 1. Agency 1, which knows R then
calculates v by subtraction:

v = (sxk — R) mod m

and shares this value with the other agencies. This method
for secure summation faces an obvious problem if, contrary
to our assumption, some agencies collude. However, there
exist collusion-resistant versions of secure summation that
involve each agency partitioning their constribution to the
sum and all agencies conducting multiple rounds of the sum-
mation process to obtain the required sum [4, 9] (the order
of the agencies could also be permuted to add an extra layer
of security)®.



Algorithm

e Setting:

| 1

More details...

EXAMPLE 2. In the setting of Example 1, if the ini-
tial search directions were written as columns of a ma-

triz S = [S(l},s(z),..

.,SEP)], then S would have the

form SA(5)
si? s s 0 ol o 0 0 0
s$V s s 0 ol o 0o o o0
3:5_._1) sff) sgf) 0 1071 O 0 0 0
0 0 0 s [s9s7 0 0 0
0 0 0 sV s 0 0o 0
0 0 o0 s PP 0 0o o0
0o 0 0 0 [o] o 7 ¥ ¥
0 0 0 0 |0 o s & ¥
\ 0 0 0 0 |0o| 0o &P & O )

Where the non-zero diagonal blocks are each orthogo-
nal bases for R picked by Ay, Ao, As.
Thus, {s{”, s ... s':p}} constitutes an orthogonal ba-

sis for RP.




Algorithm (con't.)

In our regession case (equation (6)), the § that minimizes
E(B+6s'9) = (y — X(B+ 6s) T (y — X(B + 6s'Y)), is
readily obtained as
— X3\ xg®
(Xs()T X (%)

z=y-XB=y-> ", X,B;, andw = Xs'") =
Z?:l X, Sg) are computed collectively by A1, Aa, ..., Ag

Less risk with masking

Each agency contributes to the sum are functionally related from one
iteration to the next. (secure summation)




Concluding Remarks

There are some situations that the agencies need to be
aware of.

e Our method critically relies on semi-honestness. If an
agency is malicious and participates only to sabotage
the collective efforts of the others, it can be quite suc-
cessful by secretly not following protocol.

e The method is susceptible to “unfortunate” data. For
instance, it might turn out that R* =~ 1 and all B; =0
for 7 # 3; then x3 is at risk.

e The ownership of certain attributes itself might be a
sensitive issue. For instance, a agency that provides
investment advice might possess health-related data
on their clients that they would like to include in the
regression, but would not like to reveal that to other
agencies.



2. Secure regression on
distributed databases

Karr, Alan F., Xiaodong Lin, Ashish P. Sanil,
and Jerome P. Reiter.

Journal of Computational and Graphical
Statistics 14, no. 2 (2005): 263-279.



Secure Regression via

Secure Data Integration

(Section 4.1)

Regression, Diagnostics,
Other Analyses, ...

Secure Regression via
Securely Shared
Local Statistics
(Section 4.2)

Secure multiparty
computation

l

l

Diagnostics via Diagnostics via
Shared Residual Shared Synthetic
Statistics Residuals
(Section 5.1) (Section 5.2)

Figure 1. Conceptual view of the secure regression problem for multiple, distributed databases. The lefi-hand

branch—secure data integration—is described in Section 3 and Section 4. 1. The right-hand branch, which is more

secure because it shares only locally computed statistics, is described in Section 4.2, with associated issues of

diagnostics discussed in Section 5.



Secure data integration

Secure data integration, which provides the lowest level
of protection, actually integrates the databases, but in a
manner that no database owner can determine the origin
of any records other than its own.

K> 2;
In a round-robin order:;
Insert both real and “synthetic” records;

“synthetic” records may be drawing from predictive
distributions fit to the data;

Once all real data have been included, each agency
recognizes and removes its synthetic data.



Algorithm 1: Initial Algorithm for Secure Data Integration.

Order the agencies by number 1 through K.

Round 1: Agency 1 initiates the integrated database by adding only synthetic data,

and every other agency puts in a mixture of at least 5% of its real data and—

optionally—some synthetic data, and then randomly permutes the current set of

records. The value of 5% is arbitrary, and serves to ensure that the process terminates

in at most 21 rounds. Permutation thwarts attempts to 1dentify the source of records

from their position in the database.

while more than two agencies have data left do

Intermediate Rounds: Each agency puts in at least 5% of its real data or all real

data that it has left, and then randomly permutes the current set of records.

end while

Final Round: the Agency 1, if it has data left, adds them, and removes its synthetic

records. In turn, each other Agency 2. ..., K removes its synthetic data, which it

can recognize.

Sharing: The integrated data are shared after all synthetic data are removed.

Problems:
» Identify real records
« Synthetic data are detectable

Solutions:

* Not to retained intermediate quantities (semi-honest)
* Reduce the fraction of the data (5%)

By randomizing the order in which agencies add data




obviated. In addition to a growing integrated database, Algorithm 2 requires transmission
of a binary vector d = (d,,...,dk), in which d; = 1 indicates that agency j has not yet
contributed all of its data and d; = O indicates that it has.

Algorithm 2: Secure data integration with randomized ordering.

A randomly chosen agency is designated as the Stage I agency a;.

Stage 1: (1) The Stage 1 agency a; initializes the integrated database with some—
there is no option—synthetic data and at least one real data record, and permutes
the order of the records. If a; has exhausted its data, it sets d,, = 0. Then, a; picks
a Stage 2 agency a; randomly from the set of agencies j, other than itself, for which
d; = 1, and sends the integrated database and the vector d to as.

while more than two agencies have data left

Stages 2,...: The Stage ¢ agency a,; adds at least one real data record and,
optionally, as many synthetic data records as it wishes to the integrated database,
and then permutes the order of the records. If its own data are exhausted, it sets
da, = 0. It then selects a Stage ¢ + 1 agency agy; randomly from the set of
agencies j, other than itself, for which d; = 1 and sends the integrated database
and the vector d to as_ ;.

end while Discussion...

Last round: Each agency removes its synthetic data.
Sharing: The integrated data are shared after all synthetic data are removed.



Secure multiparty computation

e Secure summation.
e Shared local statistics effects

 (old story)



Secure Linear Regression

We assume the usual linear regression model

y=XB+e, (4.1)
where
1z Tip_1 Y1
X=|: : -~ i |, y=|:] (4.2)
1z Lnp—1 Yn
and
3o £
3= ) £ = . (4.3)
.":ip—l En
Under the condition that
cov(e) = o1, (4.4)

the least squares estimate for 3 is, of course,

B=(X"xX)"'x"Ty. (4.5)



Secure Linear Regression ( con'’t)

* Horizontally partitioned
S o 1 | | Y

: 7J J
| "'n;l “r'rejp i i y'ra.j i

e Solutions:

— Via secure data integration

e every agency can perform linear regression using
the integrated and shared database.

— Via securely shared local statistics



Secure Linear Regression ( con'’t)

* Via securely shared local statistics

X":p*(n, +n,+ny)  — XX:p*p

/

K
XTX =) (X)X

J=1

XTy =Y (X)) Ty, Others are similar.




Model Diagnostics

 the coefficient of determination: R"2
>y (9 — )

> i (yi = 9)*

 Model misspecification: not close to zero.

e VIa secure summation
— Shared residual statistics
— Shared synthetic residuals

R> =




3. Privacy-Preserving Multivariate
Statistical Analysis: Linear
Regression and Classification

Du, Wenliang, Shigang Chen, and Yunghsiang S. Han.
In Proceedings of the 4th SIAM International
Conference on Data Mining. 2004.



Abstract

Multivariate statistical analysis is an important data
analysis technique that has found applications in var-
ious areas. In this paper, we study some multivariate
statistical analysis methods in Secure 2-party Compu-
tation (S2C) framework illustrated by the following sce-
nario: two parties, each having a secret data set, want
to conduct the statistical analysis on their joint data,
but neither party is willing to disclose its private data
to the other party or any third party. The current sta-
tistical analysis techniques cannot be used directly to
support this kind of computation because they require
all parties to send the necessary data to a central place.
In this paper, We define two Secure 2-party multivariate
statistical analysis problems: Secure 2-party Multivari-
ate Linear Regression problem and Secure 2-party Mul-
tivariate Classification problem. We have developed a
practical security model, based on which we have devel-
oped a number of building blocks for solving these two
problems.



Notation:

Alice’s
Private Data

xl x2

34 93
22 55
36 83
84 -1.3
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Public Data
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24
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Bob’'s
Private Data

x3 x4 x5
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Vertical partition

Y

Multivariate Statistical Analysis

Figure 1: Secure 2-party Multivariate Statistical Anal-

ysis
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Problem 1: Multivariate Linear
Regression

PROBLEM 1. (Secure 2-party Multivariate Linear Re-
gression Problem) For a data set M = (A : B : Y),
Alice knows A, Bob knows B, and they both know the
vector Y. Alice and Bob want to build a linear regres-
sion model based on X = (A : B) and Y, namely, they
want to find out a vector (3, such that Y = X3 best fits
the data set M. Due to privacy concerns, Alice cannot
disclose A to Bob, neither can Bob disclose B to Alice.

B=(XTX)"'XTy



Problem 2 : classification

from the centroid of all subjects in that class. Let D,
represents the data set consisting of the vectors of all
the subjects in class k, 1.e. each row in Dj represents
the vector of a subject. Let D;. be the vector of means of
subjects in class k, namely, D}, represents the centroid
of class k. Let Djy(i) represents the ith row of matrix
Dy, and ﬁi be a matrix, where _51(?) = Dy.(i) — Dy.

The distance (T7) between a subject (whose at-
tributes vector is V) and the centroid of class k can
be computed using the following equation:

(22) Ty = (V—Dp)"'C;H(V = Dy) +In|Cy
(23) Ck = - ! ELTB‘;



A new security model

» balance between efficiency and security

DEFINITION 3.1. (Security Model) All inputs in this
model are in the field of real numbers R. Let 4 and
Ip be Alice’s and Bob’s private inputs respectively, and

O 4 and Op be Alice’s and Bob’s outputs, respectively.
Let C represent the two-party computation between
Alice and Bob, i.e. (04,0p) = C(I4,1Ip). A protocol
C is secure against dishonest Bob if there exists an
infinite number of (I’y,0’) pairs in (R, R) such that
(0'4,0p) = C(I'y,Ig). Similarly, a protocol C' is secure
against dishonest Alice if there exists an infinite number
of (I5,0%) pairs in (R, R) such that (O4,0%) =
C(la.1Iy).



Computation model

* The two-party model

« The Commodity-Server (CS) model
— participants accept help from a semi-trusted third
party.
— The third party learns nothing about the private

data if it does not collude with any of the two
participants.

— leads to much more efficient solutions.



Data Disguising Methodology

Assume that S = F(A, B), where F .. 1s the desired
computation, A is a private input from Alice, and B is
a private input from Bob. In the proposed protocols,

at each step, the intermediate result Sj is protected in  We should not only
the following way: Alice (only Alice) knows A, and Bob protect the private inputs,
(only Bob) knows By, where |Ay + By, = Si.| We use the but also protect the
following notation to represent the above computation: intermediate results.
[A: B] — [Ay, : Be|Ay + By, = Fi(A, B)]  With one piece being
randomly generated.

The notation means that the input of the compu-
tation Fj is A from Alice and B from Bob, and Alice
and Bob do not share their inputs; the output of the
computation for Alice is A, and for Bob is By, where
the sum of A, and By, is the actual computation result,
but |Alice and Bob do not share Ay and Bk.|

Step k Step k+1
A0 PR Al o= ar P A2

BO Bl ---= BI’ B2

Figure 2: Data Disguising Strategy



Building Blocks

 Matrix Product I:

Alice has an n x N matrix A and Bob has an N x m matrix B.

[A:B] = [Va: Ve|Va+ Vo= A- B

e How?
— Commodity-Server solution
— The two-party solution



Commodity-Server solution

ProTocoL 1. ((A- B) Protocol — Commodity Server)

1. The Commodity Server generates a random n x N
matrix R, and another random N X m matrix R,
and lets ro, + 7, = R, - Rp, where r, (or 1) is a
randomly generated n x m matrix. Then the server
sends (R,,7,) to Alice, and (Ryp,7) to Bob.

~

2. élice sends A = A + R, to Bob, and Bob sends
B = B + Ry to Alice.

3. Bob generates a random n x m matrix V;, and
computes T' = A - B + (r, — V}), then sends the
result T" to Alice.

.

4. Alice computes V, =T +ro — (Ra - B)
It is easy to verify that

Vo + Vi
(A-B+(ry —W)) + 74— (Ra- B)] +Vj
[A-B—Vp+ (ra+71— Ra- Rp)] + Vi
A-B



Two-Party solution

ProTocoL 2. ((A- B) Protocol — Two Party)

1. Alice and Bob jointly generate a random invertible
N x N matrix M.

J_?LI = ﬂfgﬁ ft ﬂ-frn'ght
N | vy 2. Alice computes Ay = A - Mjep, Ao = A~ Myigng.
2 2 and sends A; to Bob.
3. Bob computes By, = Miyy—top - B, By =
\ M;o—bottom * B, and sends By to Alice.
‘¥inv—top
V-1 % x N 4. Alice computes V, = Ay - B>.
r i‘lfiﬂr_bcrﬁum 5‘ Bﬂb Complltcs Vb — Al . B]_.
% x N
It is easy to see that the above protocol achieves the
following:

By

A-B=AM -M"'B = (4, Ag)( B
2

):VH—I-VE,



Analysis of the Two-Party solution

e How to choice the random matrix M?
— Bob only knows N/2 equations;

— Some properties of M:
o K-secure

THEOREM 4.4. If M is k-secure, where % < k< %, mn
Protocol 2, the linear systems of equations Minv—bottom
B = By and A - Micsr = Ay have infinite number of
solutions for each variable in B and A, respectively.

* |Input reusing
 The actual range for certain x



Building Blocks (con’t)

e Matrix Product |l: (A1 + Bi)(A2 + Bs)

Alice and Bob need to compute (A; + Bi)(As2 +
Bs), such that Alice gets V, and Bob gets V},, where
Vo + Vi = (Ay + By)(As + Ay). This computation can
be achieved using the (A - B) Protocol twice because
(A1 + B1)(A2 + B2) = A1 As + A1 Bs + B1As + B1 Bs.
The protocol is represented by the following:

[(AISA‘E) : (BIFBQ)]
— Vo :W|Va+V,= (A1 + By) - (A + By)]



Building Blocks (con't)

e Matrix Inverse:

The protocol is represented by the following notation:
[A:B] = Vo : V|Va+ V= (A+ B)™]

Our solution consists of two major steps: first Alice
and Bob jointly convert matrix (A + B) to P(A+ B)Q
using two random matrices P and () that are only
known to Bob. The results of P(A+ B)(Q will be known
only by Alice who can conduct the inverse computation
and gets Q' (A+B)~'P~!. The purpose of P and Q is
to prevent Alice from learning matrix B. In the second
step, Alice and Bob jointly remove Q~! and P~! and
gets V, + Vi, = (A + B)~!. Both steps can be achieved
using the (A- B) protocol, thus can be solved using both
the commodity-server model and the two-party model.



Building Blocks (con't)

Similar techniques could be used to compute matrix
determinant |A + B| and matrix norms ||A 4+ B||. We
leave the details to readers.

P(A+B)Q| = [PI"|A+B[*|Q
|A+B||_FA2 = Tr((A+B)(A+B)"H)



Privacy-Preserving Multivariate
Statistical Analysis

 Multivariate Linear Regression

1. Vau+Vy =XTX

B = (XTX)"'(x"Y) |
_ T -1 __ -1
XTX - ATA ATB 2. Va_z + Vbz = (X X) = (Vﬂl + Vé}l)
~ \ BTA BTB 3. Vs + Vis = XTY

4. B = (Vaz + Vo2)(Vaz + Va3).

Step 1 can be achieved using our (A - B) Protocol;
step 2 can be achieved using our (A + B)~! Protocol;
step 3 can be achieved simply by letting V,3 = ATY
and V33 = BTY; finally step 4 can be achieved using
our Matrix Product II protocol.



 Multivariate Classification

According to Equation 2.3, we need to find a way
.--"'"--LT..--'-'--\.

to compute D, Dj, where one part (A’) of 5;,_. is
known to Alice, and the other part (B’) is known to
Bob. Because the original data set M is constructed by
the vertical concatenation of Alice’s and Bob’s private
data, Dk is the vertical concatenation of A’ and B’, i.e.
D) = (A’ : B’). Similar to Equation 5.4, we have the
following:

T AITAF AfTBr
Dx Dk = ( BrTAf BrTBr )

Therefore, Alice and Bob just need to compute V,+V; =
A" B’ using the Matrix Product protocol. Then Alice Problem.

sends A’7 A’ and V., to Bob, Bob sends B''' B’ and Vi to

Alice, and they will both have the classification model
C}, for each k.
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