An Introduction to Transfer
Learning (L% >])




Supervised learning

Train Test

Supervised learning algorithms may not work well with limited labeled data.



What is the transfer learning ?

« Traditional Machine Learning Algorithm

— Make predictions using previously collected labeled or
unlabeled training data.

— Semisupervised: built a good classifier using a large
amount of unlabeled data and a small amount of
labeled data.

e Transfer Learning

— 1995 NIPS: “Learning to Learn”, life-long learning,
knowledge transfer, inductive transfer, multitask
learning, metalearning, etc.

— 2005 new Mission: the ability of a system to recognize
and apply knowledge and skills learned in previous
tasks to novel tasks.




What is the transfer learning ?

Learning Process of Traditional Machine Learning

Different Tasks
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Fig. 1. Different learning processes between (a) traditional machine

learning and (b) transfer learning.

Domain: D = {x, P(X)}
Tasks: T ={Y, f(.)=P(Y|[X)}
Labeled or unlabeled?




Transfer Learning:D_s~=D t||T_s~=T_t

 The domains {X, P(X)} are different:

— The feature spaces X s ~= X _t

* Eg., use different languages in document classification
example;

— or marginal distributions, P_s(X) ~= P_t(X)
* Eg., focus on different topics.

 The tasks {Y, P(Y|X)} are different:

— The label spaces Y s~=Y t

* Eg., the source domain has binary document classes
whereas the target domain has 10 classes.

— or Cond. prob. Distr., P(Y_s|X_s) ~= P(Y_t|X_t)
* Eg., the source and target documents are very unbalanced.




Sentiments from Amazon

» Target task

> Kitchen appliances

* Source domains(Described with same language)
DVDs Electronics

» Can we leverage existing labeled data from
other source domains ? B NANYANG
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TABLE 1
Relationship between Traditional Machine Learning and Various Transfer Learning Settings

Learning Settings

Source and Target Domains

Source and Target Tasks

Traditional Machine Learning

the same

the same

Inductive Transfer Learning /

the same

different but related

Transfer Learning

Unsupervised Transfer Learning

different but related

different but related

Transductive Transfer Learning different but related the same
Domains D = {X, P(X)} D s~=D_t or T s~=T.s
 Source(D_s), Target(D_t), O<n_t<<n_s
Tasks T = {Y, f()=P(Y|X)}:
o Source(T_s), Target(T _t)
related ?
TABLE 2
Different Settings of Transfer Learnifig
Transfer Learning Settings Related Areas Source Domain Labels | Target Domain Labels | Tasks
Inductive Transfer Learning Multi-task Learning Available Available Regression,
Classification
Self-taught Learning Unavailable Available Regression,
Classification
Transductive Transfer Learning | |Domain Adaptation,| Sample | Available Unavailable Regression,
Selection Bias, Co-variate Shift \ Classification
Unsupervised Transfer Learning Unavailable UnavaNable Clustering,
Dimensionality
Reduction

A

Only a few or even no labels




> Self-taught
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Kinds of transfer learning

e Inductive(JA443X) Transfer Learning
— Multi-task Learning
— Self-taught Learning

 Transductive(E#£E3\) Transfer Learning
— Domain Adaptation
— Sample Selection Bias, Co-variate Shift

 Unsupervised Transfer Learning



Multi-task Learning

e Learning multiple related tasks simultaneously.

e Motivation
— Only a few data per task available;

— Shown to improve performance relative to learning each
task independently.

e Task relatedness

— Modeled by assuming all functions learned are close to
each other in some norm [Bakker03, Evgeniou05];

— Share some parameters or prior (GP) distributions of
hyperparameters; Hierarchical Bayes with GP, etc.
[Lawrence04, Bonilla08, Evgeniou04];

— Share a common underlying representation [David03,
Evgeniou07];



Multi-task Reference

» Evgeniou, Theodoros, Charles A. Micchelli, and Massimiliano Pontil. "Learning multiple
tasks with kernel methods." Journal of Machine Learning Research. 2005.

« Evgeniou, A., and Massimiliano Pontil. "Multi-task feature learning." Advances in neural
information processing systems 19 (2007): 41.

* Argyriou, Andreas, Theodoros Evgeniou, and Massimiliano Pontil. "Convex multi-task
feature learning." Machine Learning 73.3 (2008): 243-272.

* Ben-David, Shai, and Reba Schuller. "Exploiting task relatedness for multiple task
learning." Learning Theory and Kernel Machines. Springer Berlin Heidelberg, 2003. 567-580.

* Yu, Kai, Volker Tresp, and Anton Schwaighofer. "Learning Gaussian processes from multiple
tasks." Proceedings of the 22nd international conference on Machine learning. ACM, 2005.

o Lawrence, Neil D., and John C. Platt. "Learning to learn with the informative vector
machine." Proceedings of the twenty-first international conference on Machine learning.
ACM, 2004.

* Bonilla, Edwin, Kian Ming Chai, and Christopher Williams. "Multi-task Gaussian process
prediction." (2008).

* Evgeniou, Theodoros, and Massimiliano Pontil. "Regularized multi--task
learning." Proceedings of the tenth ACM SIGKDD international conference on Knowledge
discovery and data mining. ACM, 2004,



Example: Multi-Task Feature Learning
[EvgeniouO7]

The Basic Idea: to learn a low-dimensional
representation that is shared across related tasks.

Common features can be learned by inoar features
/

arg min Z ZL(yti,<at-UT$ti )+’YHA”;1
AU te(T,5) i=1

sit. Ue 0
— Uis a d x d orthogonal matrix (mapping function);
— A=J[a_s, a_t] is a matrix of parameters;

Then it was transformed into an equivalent convex
problem, following an alternately procedure.




Self-taught learning [Raina07]

e Motivation
— Labeled data is expensive to obtain.

— It's difficult even to obtain many unlabeled examples
In the target domain.

— How can use unlabeled data (images, etc.) from other
object classes which are much easier to obtain ?

 Technigue

— Uses sparse coding to construct higher-level features
using the unlabeled data;

— Apply this representation to the target data,
— Then use it for the classification task.



Figure 1. Machine learning formalisms for classifying im-
ages of elephants and rhinos. Images on orange background
are labeled; others are unlabeled. Top to bottom: Super-
vised classification uses labeled examples of elephants and
rhinos; semi-supervised learning uses additional unlabeled
examples of elephants and rhinos; transfer learning uses ad-
ditional labeled datasets; self-taught learning just requires
additional unlabeled images, such as ones randomly down-
loaded from the Internet.
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“Self-taught Learning”

g ! 4

Labeled Webpages

Unlabeled newspaper articles

o > 2 ?
Labeled Digits Unlabeled English characters
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Labeled Russian Speech
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Unlabeled English speech
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Self-taught learning

minimize, , ). H:US) -2 Q! b, 3+ B lla™1 (1)

J,J

s.t. 1b;]l2 < A, Eg'\el,...,s

Sparse features Basis vector

Notes:

— Base size s >> dimension n;

— Encourage the activations(features) a to be sparse;
— Features a(x) are inherently nonlinear function.

Problem is convex over variable a (b);
Iteratively optimized over a and b alternatingly.
Application: Deep Neural Networks (Deep Learning)

17



I WWUU‘
WWMMWNWWMWW

b1 bis) b 197
Figure 3. The features computed for an image patch (left)

by representing the patch as a sparse weighted combina-
tion of bases (right). These features act as robust edge
detectors.
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Self-taught learning

Algorithm 1 Self-taught Learning via Sparse Coding

mput Labeled tmining set

= (@) (@), (@™ y ™))
Unlabeled data {z; ugf},.. ANy
output Learned classifier for the classification task.
algorithm Using unlabeled data {J:Ef}}, solve the op-
timization problem (1) to obtain bases b.
Compute features for the classification task
to obtain a new labeled training set T =

{(a(z}”),yD)}m,, where

EL(LEEL)) = arg min - {Lgi)bjng + B [la®;.
Learn a classifier C by applying a supervised learning
algorithm (e.g., SVM) to the labeled training set 7.

return the learned classifier C.

19



Figure 4. Left: An example platypus image from the Cal-
tech 101 dataset. Right: Features computed for the platy-
pus image using four sample image patch bases (trained
on color images, and shown in the small colored squares)
by computing features at different locations in the image.
In the large figures on the right, white pixels represents
highly positive feature values for the corresponding basis,
and black pixels represents highly negative feature values.
These activations capture higher-level structure of the in-
put image. (Bases have been magnified for clarity; best
viewed in color.)

20



Reference for Self-taught learnig

« Raina, Rajat, et al. "Self-taught learning: transfer learning
from unlabeled data."Proceedings of the 24th international
conference on Machine learning. ACM, 2007.



Domain Adaptation

e Setting
— The source and target tasks are the same.

— The domains are different but related.

e D s~=D_t;

* The feature spaces are different, X_s ~= X _t;
— Alot of labeled data in the source domain;

— Only a few or even no labeled data in the target
domain.

e Notes

— Transfer Learning in NLP is referred
— as domain Adaptation.




Sentiments from Amazon

» Target task

> Kitchen appliances

* Source domains(Described with same language)
DVDs Electronics

» Can we leverage existing labeled data from
other source domains ? BB NANYANG
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Algorithms for Domain Adaptation



Structural correspondence learning

[Blitzer06]

e Extract some relevant features
— Treats M Pivot features (Determiners) as a new label vector.

— Solve M Pivot predictors
— L(.): the modified Huber loss.
— SVD is applied to W

* The learned mapping \theta
encodes the correspondence
between the features from
different domains.

* \theta x is the desired mapping
to the (low dimensional) shared
feature representation.

Input: labeled source data {(x:, y:)7—1}.
unlabeled data from both domains {x; }
Output: predictor f : X — Y

1.

2.

Choose m pivot features. Create m binary
prediction problems, p,(x), £ =1...m

For{ =1tom

W¢ = argmin (ZJ L(w - x;,pe(x;5))+

w

Allwll?)
end
W =[Wwi|...|[Wm], [UDV']=8VDW),
0 = Drﬁ;:h,:]

Return f, a predictor trained

w{([&])" )

Figure 3: SCL Algorithm




Domain adaptation problems: A DASVM
classification technique and a circular
validation strategy [BruzzonelO]

 Phase 1: initialization
— Standard supervised SVMs

4 1 ‘
min { 21w 2 40 Y ¢}
w, E 2 |

s (0) . <5 (0) — &3
kys(w ngéjfo)” Sovi=1,...,N, (x5,y)eTO,

— The separation hyperplane




 Phase 2: Iterative Domain Adaptation

— A subset of the (remaining) unlabeled
samples x_tis iteratively selected and moved
Into the training set.

minwjbggsjg {% ||W(1) ||2 + C(I) Zl &-Eg + Z“u ngi}
yi - (woxj +00) > 1-¢ |
< Vi=1,...,09 (x5,y7) € TV
Vu=1,...,0W, (xt, g V) e 70

U

L &5,€,, > 0.
 Phase 3: Convergence

empirical stopping criterion has been defined:

Q{r} =Q,
HY| < 8- M], (11)
IS < [B- M]



(a) (b) (c)

Fig. 1. Separation hyperplane (solid line) and margin bounds (dashed lines) at different stages of the DASVM algorithm for a toy data set. Labeled
source-domain patterns are shown as white and black circles. Semilabeled target-domain patterns are shown as white and black squares,
respectively. Unlabeled target-domain patterns are represented as gray squares. Feature space structure obtained: (a) at the first iteration (the
dashed circles highlight the p semilabeled patterns selected from both sides of the margin; in the example p = 3); (b) at the second iteration and (c) at
the last iteration, respectively, in an ideal situation (the dashed gray lines represent both the separation hyperplane and the margin bounds at the

beginning of the learning process).
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ADSVM: Circular validation strategy

State B

P'(x, y)

1S consistent

State 4

P (x,)

1S consistent

A= {QH(X) | A(y.q:ynsn) > Ath}’:
B={g.(x) | AV, Vin) > Awn},

C = {gn(X) ‘ A(y.q:ynsn) < Ath}:

State D

[3.4; (x’y)

1S not consistent

State C

P'(x,y)

1s not consistent

D= {Q‘n(x) | A(yta ﬁtn) < Ath}’:

Fig. 3. Diagram of all the possible state transitions exploited from the
proposed circular validation strategy.

. _ _ Starting from state D, the system
If g,(x) € A, we assume that P;(x,y) is consistent must never move back to state A
with P*(x,y) (the system is in state A). _

If g,(x) € B, we assume that P!(x,y) is consistent Starting from state B, the system

with P'(x,y) (the system is in state B). can return to state A.

If g,(x) € C, we assume that P*(x, y) is not consistent
with P*(x,y) (the system is in state C).
If g,(x) € D, we assume that P!(x,y) is not consis-

tent with P!(x,y) (the system is in state D). 29



Domain Transfer Multiple Kernel
Learning(DTMKL) [Duan12]

e Setting

— Labeled source data & a limited number of labeled target data.

e Frameworks

— To learn decision function and kernel function simultaneously.

f(x) =wo(x)+b= Z a;k(x;,X) + b,
i=1

— Reducing Mismatch of Data Distribution & the structural risk

functional of anWethod (SVM, SVR, KRL7etc.).

[k, f] = argmin Q(DIST; |

k.f

DA, D)) + 4

R(k, f, D)

Y

 \Omega is any monotonic increasing function
* R(.) is defined on the labeled patterns.

30



DTMKL [Duani2]
« Maximum Mean Discrepancy (MMD) [BorgwardtO6]

DIST(DA, D7) = sup (Exa o[f(x?)] — Exroplf(x)))

[ flle<1

= sup (f, (Byinglé(x*)] = Bxrpl(x")]))y,

I fll4 <1

— ||Ex*4mQ[¢(XA)] - EXTN’P[qb(XT)]

— Can be estimated by

H!

i Z fb(x‘."l) _ i i qﬁ(xr)
n 4 ' ! nr =1 !

<=1

DIST(D*, D) =

H

DIST?(D4, DT) = || ®s|°= tr(®'®S) = tr(KS),

where

S =ss' € RUatrxinatnn) K — ¢'¢ =

= %(n,q—l—n-r)x(n_q—l—nr)’ KA,A e R xn_,q’ KT’T c anTan’ 31



DTMKL [Duan12]

« Multiple Base Kernels [LanckrietO4]
— Assume kernel k is a linear combination of base

kernels: u
k=" dmkm,
m=1

Q(tr(KS)) = = (tr(KS))?
1 M 2 1
= — (tI' ( d'me S) ) = A drpprd:
2 m=1 2
where

P= [Ph “e ap}U]fapm — tr(K-m.S): Km — [k‘m(xia Xj)]
c ER(??_-L+??T]X(??_-1+?1T]

— Then

Lo —

and d = [d;.....dy]. Moreover, from (3), we have f(x) =

M
Em:l d-m.wznﬁi’m(x) + b, where w,,, = E:?:l Q; Qf’-m.(x-i)-
Thus, the optimization problem in (4) can be rewritten as

. . ]- I} I} -
iy n}m id pp'd+ 6 R(d, f, D), (5)




DTMKL [Duan12]

Algorithm 1. DTMKL Algorithm.
1: Initialize d = % ].Mr.
2: Fort=1,...,Thax

Using Hinge Loss(SVM)
Using Existing Base Classifiers

3:  Solve the target classifer f imthe objective function
in (6).
J(d) = mit R(d, f, D) (6)
4:  Update the linear combination coefficient vector d

of multiple base kernels using (8).

diy1 =dy — g, € D,

5: End. \

(8)

deD deD

1

min h(d) = min §d’pp’d +60 J(d).

33




Reference for Domain Adaptation

Bruzzone, Lorenzo, and Mattia Marconcini. "'Domain adaptation problems: A DASVM
classification technique and a circular validation strategy." Pattern Analysis and Machine
Intelligence, IEEE Transactions on 32.5 (2010): 770-787.

Xing, Dikan, et al. "Bridged refinement for transfer learning." Knowledge Discovery in
Databases: PKDD 2007. Springer Berlin Heidelberg, 2007. 324-335.

Blitzer, John, Ryan McDonald, and Fernando Pereira. "Domain adaptation with structural
correspondence learning." Proceedings of the 2006 conference on empirical methods in
natural language processing. Association for Computational Linguistics, 2006.

Hal Daume, 111, Abhishek Kumar, and Avishek Saha. 2010. Frustratingly easy semi-
supervised domain adaptation. In Proceedings of the 2010 Workshop on Domain Adaptation
for Natural Language Processing (DANLP 2010). Association for Computational Linguistics,
Stroudsburg, PA, USA, 53-59.

Duan, Lixin, Ivor W. Tsang, and Dong Xu. "Domain transfer multiple kernel

learning." Pattern Analysis and Machine Intelligence, IEEE Transactions on34.3 (2012): 465-
479.

Ando, Rie Kubota, and Tong Zhang. "A framework for learning predictive structures from
multiple tasks and unlabeled data." The Journal of Machine Learning Research 6 (2005):
1817-1853.



Reference for Domain Adaptation

* Yang, Jun, Rong Yan, and Alexander G. Hauptmann. "Cross-domain video concept

detection using adaptive svms." Proceedings of the 15th international conference on
Multimedia. ACM, 2007.

« Borgwardt, Karsten M., et al. "Integrating structured biological data by kernel
maximum mean discrepancy." Bioinformatics 22.14 (2006): e49-e57.

» Lanckriet, Gert RG, et al. "Learning the kernel matrix with semidefinite
programming." The Journal of Machine Learning Research 5 (2004): 27-72.



Sample Selection Bias/Co-variate Shift

 The same setting Domain adaptation but
— D s~=D_t

The feature spaces are the same, X_s =x_T (set)

The marginal prob. Distr. are different: P(X_s) ~= P(X_1t)
if P(y_s|x_s) ~= P(y_t|x_t), then sample selection bias;
If P(y_s|x_s) \approx P(y_t|x_t) then covariate shift.

Xs

N

A7

4
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Sample Selection Bias/Co-variate Shift
e Technique: sample reweight

0F = arg min ]E(mjy)eP[l(ma Y, 9)1
0cO t -

\L » Estimate Independently[Zadrozny04]
§* = arg min — Z[l iy, 0)], |+ Kernel-mean matching[HuangO7]
pco T » KL importance estimation[Sugiyama08]
v 1

¢* = arg min Z P(Dg)l(x,y,0).
. (z,y)€Ds

v

P(D
6* = arg min Z (Dr) P(Dg)l(x,y,0)
HcO ($ U)EDS P(DS)

P(Yr|X7) = P(Yd|Xsg).

Pf(mﬂﬁyﬂ) _ P(T‘h)

Pr(xr,, yr, | _ |
A arg min —l(zs,,ys,,0). Po(zq. s Pl
66@ ; PS(:CS; ) ySl) ( ) ) (TL{M yfji ) (T’I’;)
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Reference for Sample Selection Bias

Zadrozny, Bianca. "Learning and evaluating classifiers under sample
selection bias." Proceedings of the twenty-first international conference on
Machine learning. ACM, 2004.

Huang, Jiayuan, et al. "Correcting sample selection bias by unlabeled
data."Advances in neural information processing systems. 2006.

Shimodaira, Hidetoshi. "Improving predictive inference under covariate
shift by weighting the log-likelihood function.” Journal of statistical
planning and inference 90.2 (2000): 227-244.

Huang, Jiayuan, et al. "Correcting sample selection bias by unlabeled
data."Advances in neural information processing systems. 2006.

Sugiyama, Masashi, et al. "Direct importance estimation with model
selection and its application to covariate shift adaptation.”" Advances in
neural information processing systems. 2008.



Unsupervised Transfer Learning

* Clustering, Dimensionality Reduction
— Self-taught clustering[Dai08], minimize,

J(XHT: XS? Z)
— (X1, Z) — (X7, 2) + A[I(Xs, Z) — I(Xs, 2)],

» Zis a shared feature space by X s and X _t
 I(.,.) is the mutual information.

* Transferred discriminative analysis [WangO08], iteratively,

— applies clustering methods to generate pseudoclass labels for
the target unlabeled data.

— applies dimensionality reduction methods to the target data and
labeled source data to reduce the dimensions.



Reference for Unsupervised
Transfer Learning

« Dal, Wenyuan, et al. "Self-taught clustering." Proceedings of the 25th
international conference on Machine learning. ACM, 2008.

» Wang, Zheng, Yanggiu Song, and Changshui Zhang. "Transferred
dimensionality reduction." Machine learning and knowledge discovery in
databases. Springer Berlin Heidelberg, 2008. 550-565.



Techniques Summary

TABLE 3
Different Approaches to Transfer Learning

Transfer Learning Approaches

Brief Description

Instance-transfer

To| re-weight| some labeled data in the source domain for use in the target domain [6], [28], [29],
[30], [31], [24]. [32]. [33], [34]. [35].

Feature-representation-transfer

Find 4 “good” feature representation [that reduces difference between the source and the target
domains and the error of classification and regression models [22], [36], [37], [38]., [39], [8].
[40], [41]. [42], [43], [44].

Parameter-transfer

Discovér shared parameters or priors between the source domain and target domain models, which
can benefit for transfer learning [45], [46], [47], [48], [49].

Relational-knowledge-transfer

Bui]d| mapping of relational knowledge| between the source domain and the target domains. Both
domains are relational domains and 1.1.d assumption is relaxed in each domain [50], [51], [52].

TABLE 4
Different Approaches Used in Different Settings

Inductive Transfer Learning

Transductive Transfer Learning

Unsupervised Transfer Learning

Instance-transfer

\/

Feature-representation-transfer

v

v

Parameter-transfer

Relational-knowledge-transfer

<<
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Related Problems

 Recognize the limit of the power of
transfer learning (transfer bound)

— Using Kolmogorov complexity[MahmudO7]
— Graph-based method [Eaton08]

* Negative transfer

— How to avoid negative transfer automatically?
e Bayesian approach
. etc.



Reference

Pan, Sinno Jialin, and Qiang Yang. "A survey on transfer
learning." Knowledge and Data Engineering, IEEE Transactions on 22.10
(2010): 1345-1359.

Mahmud, M. M., and Sylvian Ray. "Transfer learning using Kolmogorov
complexity: basic theory and empirical evaluations." Advances in neural
Information processing systems. 2007.

Eaton, Eric, and Terran Lane. "Modeling transfer relationships between
learning tasks for improved inductive transfer." Machine Learning and
Knowledge Discovery in Databases. Springer Berlin Heidelberg, 2008.
317-332.



	An Introduction to Transfer Learning (迁移学习)
	Supervised learning
	What is the transfer learning ?
	What is the transfer learning ?
	Transfer Learning: D_s~=D_t || T_s ~= T_t
	幻灯片编号 6
	幻灯片编号 7
	幻灯片编号 8
	幻灯片编号 9
	Kinds of transfer learning
	Multi-task Learning
	Multi-task Reference
	Example: Multi-Task Feature Learning [Evgeniou07]
	Self-taught learning [Raina07]
	幻灯片编号 15
	“Self-taught Learning”
	Self-taught learning
	幻灯片编号 18
	Self-taught learning
	幻灯片编号 20
	Reference for Self-taught learnig
	Domain Adaptation
	幻灯片编号 23
	Algorithms for Domain Adaptation
	Structural correspondence learning [Blitzer06]
	Domain adaptation problems: A DASVM classification technique and a circular validation strategy [Bruzzone10]
	幻灯片编号 27
	幻灯片编号 28
	ADSVM: Circular validation strategy
	Domain Transfer Multiple Kernel Learning(DTMKL) [Duan12]
	DTMKL [Duan12]
	幻灯片编号 32
	幻灯片编号 33
	Reference for Domain Adaptation
	Reference for Domain Adaptation
	Sample Selection Bias/Co-variate Shift
	Sample Selection Bias/Co-variate Shift
	Reference for Sample Selection Bias
	Unsupervised Transfer Learning
	Reference for Unsupervised Transfer Learning
	Techniques Summary
	Related Problems
	Reference

