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Distributed Image Processing



Background

e The emergence of Image Processing System




Challenges

Bandwidth limitations of networks

Computational load at nodes
Communication costs

System scalability



Solution

e Distributed architecture
— Advantage: without any global knowledge.
— Challenge: resource constraints...

— Objective: to minimize the penalty compared to a
centralized solution.




Distributed Camera Networks

[integrated sensing and analysis for
wide-area scene understanding]



Background

e Consider a video cameras network
— Manually analyzed.
— Fixed Cameras

— Acquire the desired resolution or viewpoint
ineffectively.

— Difficult in analysis of the video.



Background

e A possible solution

— To Integrate the analysis and sensing task more
closely by controlling the parameters of a pan-tilt-
zoom(PTZ) camera network.

— [Decentralized fashion] The cameras, acting as
autonomous agents, analyze the raw data locally,
exchange only distilled information and reach a
global analysis.



Solution

* A closed-loop framework

* dynamic scene analysis in a reconfigurable,
distributed PTZ camera network

* Integrating a number of component parts
that have been studied more or less
separately.



The Integrated System Structure
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[FIG1] Overall system diagram depicting a framework for integrated sensing and analysis in a reconfigurable, distributed camera
network. The user criteria can define what performance metrics the network will optimize. The user criteria could include covering the
entire area at a desired resolution, obtaining facial shots, maximizing image resolution, and so on.




Data association

e Joint Probabilistic Data-Association Filters
(JPDAFs)[1]
— Update the positions with a probabilistic fusion.
— Exchange information with neighbors.
— Associated the closest tracks to each other.
— Fused together using a Kalman consensus filter.

* A graphical method|2]

[1] N. Sandell and R. Olfati-Saber, “Distributed data association for multi-target tracking in sensor networks,” in
Proc. IEEE Conf. Decision and Control, 2008, pp. 1085-1090.

[2] L. Chen, M. Cetin, and A. Willsky, “Distributed data association for multi-target tracking in sensor networks,” in
Proc. Int. Conf. Information Fusion, Philadelphia, PA, July 2005, pp. 9-16.



Distributed calibration

 Average consensus-based methods[3] and
graphical methods|[4] for estimating
calibration parameters.

e Data association and calibration are closely
interlinked.

[3] E. Elhamifar and R. Vidal, “Distributed calibration of camera sensor net-works,” in Proc. IEEE/ACM Int.
Conf. Distributed Smart Cameras, Como, Italy, Aug. 2009, pp. 1-8.

[4] D. Devarajan and R. Radke, “Calibrating distributed camera networks using belief propagation,” EURASIP J.
Appl. Signal Process., vol. 2007, no. 1, pp. 1-10, Jan. 2007.



Distributed tracking

e Kalman-consensus tracker

— Mathematical framework

— Algorithm description
* handoff in consensus-tracking algorithm

— Target moves to overlapping/non-overlapping
camera.

— Sudden failure of camera



Reconfiguration

Optimal camera placement strategies
The path-planning strategy

— Static cameras / PTZ cameras

Random occluding objects[centralized]
Distributed approach:

— Expectation-Maximization(EM)

— Multiplayer learning in games



Game-theoretic frameworks

* |Introduction

— Multiplayer game: each camera is a player and
interested in optimizing its own utility.

— Local utility functions are aligned with the global
utility function.

— The agreeable setting: Nash equilibrium.



Game-theoretic frameworks

* Model:
= N, targets
* Alocation vector, a resolution parameter ;, 1=1,.., N,

= N_cameras

* Camera C, € C will select its own set of parameters a, c A,
, C, is the parameter profile that A, can select from, to
optimize its own utility function U, (&) .

"a =(a,,..,a, ) isapure Nash equilibrium if

U, (a,a]) = maA)‘(UCi (a,a’.), VC, eC.



Game-theoretic frameworks

e Design utility functions

O Target utility u, (A)
O View criterion: M, (A) :1_H(1_ p,) Where

ﬂ,r”
r

pi|:<1_e_ o f o <,

0 otherwise

O Tracking criterion: M, (A) =exp{-Trace(P,*)} , where
(P =Y+ >, (F/(A)R{(AF (A
je(ciuc!)
O P is the error-covariance matrices
O F is the measurement matrix
O R is the measurement-error covariance



O Global utility
O the desirability of the settings profile a

O the global utility function as,
Uy (A) =2 Vi Uy (A)
O The weight of targets V can be set based on the user’s input.

0 Camera utility

0 Define as its marginal contribution to the global utility

U, (A)=U (A)-U (a;) =)V, U, (A)-U; ()

O a; = A—gq, is the parameter profile of all the cameras except C.



Game-theoretic frameworks

e Optimization strategy(Nash equilibrium)
= Random choice camera

= Search for a set of parameters that maximizes its
camera utility based on previous negotiation step.

" Broadcast its choice to its neighboring cameras.

= Until no cameras increase its own utility.

* Nash equilibrium VS. EM approach



Experiment

e Setup
— Cameras connected through a wireless network.

— Two tasks:
e To cover the entire area(area coverage)

e To cover the targets and the entry/exit regions(target
coverage)



 Performance analysis

d

[FIG2] Dynamic camera-control images. Blue regions mark the FOVs. The targets are marked in green with a red label. This figure
is best viewed on a computer monitor. (The video as well as the experimental results and example code are available at http://www.
ee.ucr.edu/ amitrc/CameraNetworks.php.) Time steps are as follows: (a) k = 0, (b) k = 2, (c) k = 19, and (d) k = 36.
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 Performance analysis
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[FIG3] Comparison of the average tracker covariance and
resolution of all targets being actively tracked by a system for

target coverage versus the one for area coverage.
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Discussion

e Scalability

— The data that need to be exchanged
e information vector u(4x1)
e information matrix U(4x4)
e state estimate x(4x1)
e PTZ parameters(finite) of cameras.

 Latency
— Does not have any effect on experimental results.

e Accuracy



Comparative analysis

[TABLE 1] COMPARISON BETWEEN CAMERA NETWORK RECONFIGURATION STRATEGIES.

APPROACH
MITTAL AND DAVIS [33]

SOTO ET AL. [35]
PICIARELLI ET AL. [34]

QURESHI AND TERZOPOULOS [32]

INTEGRATED APPROACH

OBJECTIVE
STATIC CAMERA PLACEMENT

AREA COVERAGE

VWEIGHTED AREA COVERAGE
BASED ON PRIOR ACTIVITY MAP

CAMERA-TO-TARGET ASSIGNMENT

SATISFIES MULTIPLE CRITERIA

ARCHITECTURE
CENTRALIZED

DISTRIBUTED
DISTRIBUTED

CENTRALIZED

DISTRIBUTED

OUTCOMES

GLOBAL MAXIMA OF AREA COVERED WHILE
CONSIDERING OCCLUSION

LOCAL MAXIMA OF TOTAL AREA COVERED
LOCAL MAXIMA OF WEIGHTED AREA COVERED

TRACK-BASED ONE-TO-ONE MAPPING (BETWEEN
CAMERAS AND TARGETS) AND HANDOFF
TRACK-BASED MANY-TO-MANY MAPPING (BETWEEN
CAMERAS AND TARGETS)

23



Future work

O Robustness of the networks;

O distributed data storage and retrieval;

O Learning semantic models;

O Performance analysis of complex distributed
system;

O Visualization tools, etc.



Distributed Computer vision
algorithms

[challenges faced in deployment of
camera sensor networks]



Background

e Camera Sensor Networks(CSN)
— Resource-constraints

— To continuously observe the scene and carry out
automatic analysis.

— A centralized fashion can not address this issue.

— Distributed computer vision algorithms promises
to significantly advance the state of art in
computer vision system.

— But a number of fundamental challenges exist.



Pose Recognition
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Network Localization
and Calibration Node
Architecture

Spanning Tree, Vision-
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Propagation Discovery
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[FIG1] An example of distributed scene analysis with a CSN.
Camera nodes discover the network’s vision graph and use
distributed algorithms to localize the CSN. After this initial
phase, the nodes can collaborate to track and recognize a target.
(lllustration courtesy of Prof. Andreas Terzis.)
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Challenges
to traditional computer vision algorithms

e Centralized computer vision algorithms apply to
CSN deployments.
— Communications and observations limited as CSNs are

constrained by severe network capacity and energy
constraints.

— Collecting all the raw data at a single location is
impractical for a CSN.

— Many computer vision tasks cannot be performed in
real time in a low-power computing platform.

— Current work on CSNs often assumes that cameras are
fully calibrated.



Challenges
to traditional distributed algorithms

e Distributed algorithms used to be developed in a
WSN apply to CSNs.

— Images and videos are high-dimensional
measurements.[scalability]

— Plagued with noise, outliers, missing data and
clutter.[robustness]

— Information can be time varying.[dynamic]

— The camera projection model, images and videos are
nonlinear functions.

— There are inherent ambiguities in the estimation of the
state, which is not Euclidean.[nonlinear]



Challenges
to traditional sensor network architectures

* The classical distributed computer vision Alg. for
WSNs can be extended for addressing following
problems:

— Vision-Graph Discovery

— Distributed CSN Localization

— Distributed CSN Calibration

— Distributed Object-Pose

— Distributed Action Recognition

— Distributed Tracking(not covered)



CSN Model

The communication graph: G, = (v, &,)
The vision graph: G, = (v, ¢,)

The nodes of the CSN: p ={1,..., N}
The edge: &, CLXV

The set of neighbors of node i: N; ={lev|(l, ])ec}

[FIG2] The communication graph (red lines) and the vision graph
(blue lines) are, in general, different. For instance, in the
example, cameras A and B can communicate but their fields of
view do not intersect.
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CSN Model

e The pose of each camera node i : 9; = (R, T;) € SE(3)

— Where SE(3) is the space of rigid-body transformations. Each element

of SE(3) is composed of a rotation matrix

R €SO@)={R e R*:R'R=1,det(R) =1}
— and a translation vector T eR?®

e The standard projective camera model
— a3-Dpoint X e R*®to its image in the ith camera X =[x, V.,]]€R®,
by the formula
A% =K (R X +T)
* A € R" is the depth of the point X in camera /.

* K e R®? is an upper triangular matrix called the calibration matrix, which
transforms the coordinates of an image point from metric to pixel coordinates.



Review of Distributed Alg.

e Spanning-tree algorithms
 Consensus algorithms

* Belief-propagation algorithms



Spanning-tree algorithms

[FIG3] (a) A network with five nodes and (b) a possible spanning
tree highlighted in red.
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Consensus algorithms

0 10 20 30 40 50
lterations

[FIG4] An example of consensus for a network of N = 20 nodes

in a ring topology and where the mean of the local
measurements is u = 0. We plot the state of each node after

each iteration. All the states converge to the average u.
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Belief-propagation algorithms

e The marginal distribution P(Zf)=L}jf(zl ,,,,, 2y)dz;.
* Markov can be factorized as p(z,, ..., 2,) = [Tdi(z) [Tz 2)

iEV JEN,
* Using an iterative message-passing algorithm
my(z;) = 1,

mifz) = | itz iy (z)d

z kE\A;

bi(z;) = d(z;) [ [mii(2)).

JEN,

— bis called the belief at node i and an approximation of the marginal
density p(zi) [known as sum-product belief propagation]

— If the state of node z and observation u is statistically independent,
then the joint distribution as

p(zy,. .., zyluy,. .., uy) < plzy, ..., Zay Uy o Uy)

H (ugz;) H%z z;),

JEN



Vision-Graph Discovery

e Feature extraction

e Feature matching and vision-graph discovery



Feature extraction

e Photometric features

— Traditional choice
e Scale-invariant feature transform (SIFT)
e Speeded up robust features (SURF)
e Histogram of oriented gradient (HOG)

— Drawback

e Require the variation of the image intensities to be rich
enough.



Feature extraction

e Activity features

— Standard motion-detection algorithm
e Background subtraction
* Hypothesis testing and robust fitting

— Advantage

e Providing correspondences for regions with low texture

— Drawback

e The scene must be nonstatic



An example of activity features

1 1
0 0
205 300 305 400 405 500 205 300 305 400 405 500
(b)

[FIG5] An example of (b) activity features extracted from (a) two different images corresponding to the same point on the road
(marked in blue). In spite of the different camera angles, the two feature descriptors are extremely similar. (Photographs and plots
courtesy of Prof. V. Saligrama [26].)
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Feature matching and vision-graph
discovery

 Reduce the burden of match high-dimensional feature
— Select and transmits the most discriminant SIFT features.

— Compress feature
e Compress into a feature digest using PCA etc.
* Transform the features into binary vectors using CHoG etc.

— Use the feature digest from other camera to reconstruct its
feature descriptors.
 Reduce the number of image pairs
* The transitivity of the correspondences
e The theory of random graphs



Distributed structure from motion(SfM)

e Model

— Consider N cameras with unknown poses {g=(R,T)}
observing P 3-D points at P unknown locations.

e The goal of camera localization is to estimate the camera poses
from the images taken by N cameras.

e The goal of 3-D reconstruction is to find the locations of the 3-D
points observed by N cameras.
/;-'“
Camera j

b 4
",

, Camera i

e The combination of two is SfM.

[FIG6] A schematic view of a CSN where each node can measure
the relative pose of other cameras.



e Solve the SfM in a centralized fashion

— Assumption
e All the cameras have an intersecting field of view.
 The 3-D scene is static

— Objective function

* Minimizing the reprojection error

N P
RepErr =2 > [1%, —7(K (R X, +T) I
i=1 p=1

— where 1 :R%® — R?represents the perspective projection model

* Nonlinear optimization problem

e Solve the SfM subtasks(CSN localization and
calibration) in distributed fashion



Distributed CSN localization

 Assumption
— The vision graph is known
— The feature matches are known and contain no errors.

— The feature points are corrupted small-to-moderate amounts of noise
but not by outliers.

— the calibration parameters K are known.
e Possible approach

— Spanning-tree-based approach
— Consensus-based approach



Spanning-tree-based algorithm

Model
— Each camera is equipped with a blinking LED and accelerometer.
— Some of the cameras are in the direct line of sight.

e algorithm

e Pairs of cameras that are visible to each other can uniquely determine
their relative rotation.

 Then, using a spanning-tree algorithm to setup a linear system of
equations and recover also the relative translation.

* Improve
e Bundle adjustment

Evaluate
 Not require extracting or matching any feature from the image.
 Require more hardware; more restrictive assumption.



Consensus-based algorithm

e Model
— Based on two-view geometry to recover noisy estimates §; = (R;, T;)
of their relative poses.
— A gradient descent in SE(3) for minimizing the cost function
1 5 ~
Doc ({gij}(i,j)eg) = E(Z) dSE(3)(gij , gij)
i,j)ee
* The consistency constraints are not distributed.

— A cycle-distributed solution
* Sharing the information between each node and all the cycles it belongs to.

— Reparameterizing
* Using absolute poses(Ri,Ti), rather than the relative poses(Rij,Tij).
e Results in a local update, the gradient of the cost function is distributed.



* experiment

— On a network of N = 7 cameras looking at a scene with 30 3-D points

[TABLE 1] LOCALIZATION ERRORS OBTAINED BY THE CSN

LOCALIZATION ALGORITHM OF [40] ON THE NETWORK
CONFIGURATION OF FIGURE 7.

4 Camera
NOISE 0 PX 1PX 3 PX
ROTATION 0.00 (0.00) 0.13 (0.00) 0.39{0.03)
TRAMSLATION 0.00 (0.00) 0.09 (0.00) 0.29{0.03)

THE POINT CORRESPONDENCES ARE CORRUPTED BY GAUSSIAMN MOISE WITH VARIANCE
0, 1, AND 3 PX. WE REPORT THE MEAM AND VARIANCE (THE LATTER IN PAREMTHESIS)
OF THE ROTATION AND TRAMSLATION ERRORS (IN DEGREES) OF MORE THAN 100
REALIZATIONS OF THE MOISE.

[FIG7] The synthetic network and 3-D points used to test the
consensus-based localization-CSN algorithm of [40]. The network
of N = 7 cameras has four-regular graph topology.

e This approach is more geometric in nature
 The main limitation of this method is that the optimization problem
is nonconvex, hence, a good initialization is critical.
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Distributed CSN Calibration

e Challenge
— Calibrating a single camera do not scale well for CSNs.

— Several autocalibration methods calibrate the cameras by solving
nonlinear equations such as Kruppa’s equation.[numerically ill]

— The camera have different intrinsic parameters.
e Possible Solution

— Integrating visual information across the network

e Spanning-tree-based approach
» Belief-propagation approach



Spanning-tree-based approach

* Find some of the unknown calibration parameters in addition
to the relative camera pose.

e Start from the calibrated camera and use its correspondences
to localize and calibrate all its neighbors

* Information is propagated along a spanning tree of the

network. [TABLE 2] CALIBRATION ERRORS OBTAINED BY THE CSN

CALIBRATION ALGORITHM OF [50] ON A NETWORK
CONFIGURATION SIMILAR TO THAT IN FIGURE 7.

NOISE 0PX 1PX 2 PX 3PX
ERRORS 0.00 (0.00) 0.81(0.03) 2.13(0.08) 4.38 (0.21)

THE POINT CORRESPONDENCES ARE CORRUPTED WITH GAUSSIAN NOISE WITH
VARIANCE 0, 1, 2, AND 3 PX. WE REPORT THE MEAN AND VARIANCE (THE LATTER IN
PARENTHESIS) OF THE CALIBRATION ERRORS (IN %) OF MORE THAN 100 REALIZATIONS
OF NOISE.

49



Belief-propagation approach

R Roof Lines
. % Side Wall
R 1210

J? 9 ;1 3
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.-"'4

A

(a) (b)

[FIG9] Network localization and calibration results for the belief-
propagation based approach of [51]. (a) Reconstructed 3-D
points overimposed on one of the input images. (b)
Reconstructed camera poses and 3-D points. (Photographs and
images courtesy of Prof. R. Radke [51].)
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Distributed Object-pose Estimation

e Model

Camera j /B A \
= Camera i
A

e Consensus on SE(3)

* Consensus on 3-D points

[FIG10] A schematic view of a CSN where each node can
measure the pose of an object with known geometry.
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Consensus on SE(3)

e Model

— Consider the geodesic distance in the space of rotations SO(3), We
denote such a distance as dg 5 (R;, R;), R, R; € SO(3). We can then
define the Fréchet mean R € SO(3) of the N measurement U, as the
point in SO(3) that globally minimizes the sum of squared geodesic

distances, _ ,
R =arg Rgér(]3)§d80(3)(R1Ri’Ui)



Consensus on 3-D points

10N

Angles (degrees)

10 20 30 40 &0 60 70
Iterations
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[FIG11] An example of running consensus-based algorithms for
distributed pose estimation in a CSN with N = 20 nodes in a ring
topology. The plots show the rotation errors (in degrees)
between the local estimate of the object orientation and the
global Fréchet mean for (a) a direct extension of consensus to
SE(3) and (b) a distributed implementation of the centralized
Fréchet mean algorithm, as described in [19].
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[FIG12] Comparison of consensus-based distributed object-pose
estimation algorithms. The average reprojection errors (in pixels)
are calculated on (a) the SoftPOSIT output before any consensus
method is performed (red, [53]), (b) consensus by penalized world
coordinates (magenta, [57]), and (c) consensus by the Frechét mean
(blue, [19]). The error bars denote the first quartile, median, and
third quartile. (lllustration courtesy of Dr. P. Burlina [57].)
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Action Recognition

 Consensus-based method
e Feature histograms-based method



Consensus-based method

Average Probability of
Correct Match
coooooooo
C=aNWwRNo ~D o=

mm Average over All the Cameras

mm Consensus of All Five Cameras

— Average Consensus of All Combinations of
Four Out of Five Cameras

== Average Consensus of All Combinations of
Three Out of Five Cameras

mm Average Consensus of All Combinations of
Two Out of Five Cameras

[FIG13] Experimental results on distributed action recognition
via consensus [58]. The plot shows a comparison of average
probability of correct match for individual cameras and their
consensus for all the activities. There are seven sets of bars for
seven different actions. In each set, there are five bars where the
leftmost one (blue) is the average probability of the correct
match for individual cameras, and the next four bars are the
average probability of the correct match of the consensus over
all the combinations of cameras taking, respectively, five, four,
three, and two out of five cameras. (lllustration courtesy of Prof.
A.K. Roy-Chowdhury [58].)
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Feature histograms-based method



Conclusions and future directions



Distributed and Decentralized
Multicamera Tracking

[Accurate and energy-efficient
algorithms]



Background

e The decreasing cost of cameras and advances in
miniaturization have favored the deployment of large-scale
camera networks.

e The growing number of cameras enables new signal-

processing applications that cooperatively use multiple
sensors over wide areas.

 Object tracking is an important step in many applications
related to security, traffic monitoring , and event recognition.



Introduction

e Discuss decentralized and distributed
multicamera tracking approach

— Cover common algorithmic steps
e Calibration and Synchronization
e The selection of fusion centers

— Compare specific tracking approach.
e Decentralized trackers
e Distributed trackers
e Quantifying communication and computation cost
e Comparative example



Model

e Consider a network C ={C,,..., C_,..., C,}of N cameras
monitoring T targets.

 The state of target j at time k be defined as xlf",where
v e{c, 7}represents either the cth camera view or an
hypothetical top view mt (plane).

e State: position, shape, velocity, size, contour, etc.

* Target state estimation on v aims to associate noisy
measurement z"' ={z"",..., z'}to obtain the trajectory

X ={x",....,x'} for each object i.



Calibration and synchronization

 Multicamera fusion can be performed through
correspondence between measurement z,*' or

trajectories.

— Measurement correspondence:

* Map the features z° ={z¢' |i =1,..., M} from each camera view to a
common view V using a project matrix H,
C,V,i __ TYC,VoC,i
z,"" =H"1z,
* The correspondence between feature points is performed using a
similarity measure(Euclidean distance, color histogram similarity).

 The occupancy mask of a target can be projected to obtain an
aggregated occupancy on a common view.

Z" ={z>""|ceC!}



— Trajectory correspondence:

e The states of the object are projected from each view to a
common view using H,

C,V,i C,V\,C,i
X =H""X,
c,V,i

« After projection, the tracks X "' ={x"",..., X
different camera are put in correspondence.

— The projection matrix H: -
e Computed by selecting control point[24] m
* Using the scale-invariant feature p N P 3

transform(SIFT) —
e Using three-dimensional feature points %L
\ he

e Using the relative position and orientation
of the sensors in nonoverlapping cameras. ‘\

[FIG1] Trajectory correspondence among multicamera views.



* Synchronization

— Through a centralized server
e distributes timestamp information or through a event.

— Automatic synchronization method
e Introduce a temporal shift
e To rectify the temporal shift between measurement.

 Remaining temporal shifts are handled as uncertainty during
target-state estimation.



Fusion centers

e Fixed fusion center
— Higher processing power and energy supply
— Generate lower-quality observations.

e Dynamically clustering
* Based on trackablility measures
e Best-view selection
 Not necessarily use the best cameras for tracking
 Online camera clustering
 Improve scalability and robustness against node failures



Dynamic clustering example

Time

(a) (b) (c) (d)

[FIGZ] Multiple dynamic clusters observing a target. (a) Example with two camera clusters identified with yellow and violet triangles
that represent the fields of view of the cameras. Note that despite the target being visible in three cameras of the yellow cluster and in
only one camera of the violet cluster, the chosen active cluster could be the violet one as the target was first seen in this cluster. (b)-{(d)
Evolution of the camera cluster structure over time as a function of the target position (cameras: green dots; fusion centers: blue dots;

active fusion center: red circles).
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Decentralized Tracking

Graph Matching(GM)

Hidden Markov Model(HMM)

Particle Filter(PF)

Gaussian Mixture Particle Filter
Tracking-Before-Detect Particle Filter(TBDPF)
Kalman Filter(KF)



[TABLE 1] MAJOR STEPS OF TARGET STATE-ESTIMATION ALGORITHMS.

ALGORITHM TYPE MAIN STEPS
GM DETERMINISTIC  BIPARTITE GRAPH MAXIMUM PATH COVER
HMM PROBABILISTIC ~ EMISSION PROBABILITIES VITERBI DECODING

PARTICLE FILTER

KF

PROBABILISTIC

PROBABILISTIC

p(zy'Ixp ' =)
PREDICTION

X' =Fox vy

PREDICTION

p, i _ N
Xpie—1 = Fe X1 + v,

Qi1 = FQFL+ Qg

UPDATE
y II. p(zklx;.lr 1)p(x;:r|x¢»:r
Wy T Wy
q(xku i, rlxu ir zk)
UPDATE

i v, o i
X = Xpio 1 + Ke(zh ' — Ay )

Q= (1- K)A QY
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Fusion
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Fusion Centar
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[FIG3] Data fusion and processing steps in decentralized multicamera tracking.
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Graph Matching

e Model
e Vertices: measurements at the entry and exit point.
* The edge between two vertices z_and z,, is weighted by their
similarity {(z,,2,)
e Algorithm

e find the maximum-weight path cover over a certain number of
consecutive time steps

* The complexity: O(n*®)

* Improve

 Deal with Overlapping field of view: projected onto a top-view plane
n,then GM is applied on generated occupancy map.

e Improve accuracy: using a multilevel; the collaboration between the
cameras and their fusion center.



Hidden Markov Model(HMM)

e Model
e The search area(occupancy mask) is divided into a regular
grid(C,V).
e Estimate the probability of the measurement and the state
ending at location a at time k. The posterior is
p(x¢" 1¥5) = PR I =a)ymax p(x" =alxy =b)x p(x7; | ¥7,)
— ¥i={I;"|ceC} is the set of projected occupancy masks from the
set C, of cameras observing the target.
— p(¥; | xf’i =a) is computed based on the color similarity
— Solved by the Viterbi algorithm
e Then project to each view for validation.

 Drawback: Delay



Particle Filter(PF)

 Sampling importance resampling(SIR)

— Estimate the posterior probability density function,
R

PO 1Z3) = D W S0 = %)
— The particle weights arer:hpdated based on the likelihood
as

v,i,r v,i,r v,i,r

W;(/,i,r oc Wl\</_|1r p(zl\:,l | Xt—llr) ps)l(l: | Xk—l

q(x™" [ X Zy)
* Where ((-) is the importance density function.

. p(Zf(/’i | Xff’i) is the likelihood function.
e p(X;" | X:;) isthe transition density defined by the target motion.




 Adopted strategy

— Running one PF on the fusion center

* Project the object height onto the top view, then
backproject to the view.

* The final likelihood for the weight update is computed
as : : Ci y*cin2
p(z " 1 xey) = Te ™™

ceC,
— Using an distance based on the Bhattacharyya coefficient.

— Using multiple centers fusion

e The product of likelihoods | I, P(z %), can be
approximated with a parametric model ¢°(x;;4,)

— Where ¢ are the learned parameters for camera c.

— Quantization, vectorization and parameterzation.



Gaussian Mixture Particle Filter

 PFis computationally expensive because of the use of
multiple particles.

e Individual PFs can run in parallel in each node.

e The local sufficient statistics(belief) is approximated by a low-
dimensional Gaussian mixture model as

p(XV||ZV|) ZWV|9N(IUV|6’ V|6?)

— Where @is the number of Gaussians
— (,uv'g V”9) are the mean and standard deviation of the Gaussian.

— Converge almost surely to the posterior distribution estimated with a
centralized Bayesian formulation.



Tracking-Before-Detect Particle Filter



Kalman Filter



Distributed Tracking

e Particle Filter

e Kalman Consensus Filter
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[FiG4] Data fusion and processing steps in distributed multicamera tracking.
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Particle Filter



Kalman Consensus Filter



Quantifying communication and
Computation Costs

* Modeling Costs
e Comparative example
e Discussion



Modeling Costs



Comparative example

*
R
° proe
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[FIG5] Communication cost versus accuracy while increasing the i

number of measurements for KCF. Note that the rate of accuracy
improvement with respect to the communication cost is much

reduced after adding more than 50% of the total measurements. [FIG6] Multicamera network with N = 14 and T = 12 targets.
Tracks are shown with positions corrupted by various noise

levels.

83



Discussion



	幻灯片编号 1
	Background
	Challenges
	Solution
	Distributed Camera Networks
	Background
	Background
	Solution
	The Integrated System Structure
	Data association
	Distributed calibration
	Distributed tracking
	Reconfiguration
	Game-theoretic frameworks
	Game-theoretic frameworks
	Game-theoretic frameworks
	幻灯片编号 17
	Game-theoretic frameworks
	Experiment
	幻灯片编号 20
	幻灯片编号 21
	Discussion
	Comparative analysis
	Future work
	Distributed Computer vision algorithms
	Background
	幻灯片编号 27
	Challenges �to traditional computer vision algorithms
	Challenges �to traditional distributed algorithms
	Challenges �to traditional sensor network architectures
	CSN Model
	CSN Model
	Review of Distributed Alg.
	Spanning-tree algorithms
	Consensus algorithms
	Belief-propagation algorithms
	Vision-Graph Discovery
	Feature extraction
	Feature extraction
	An example of activity features
	Feature matching and vision-graph discovery
	Distributed structure from motion(SfM)
	幻灯片编号 43
	Distributed CSN localization
	Spanning-tree-based algorithm
	Consensus-based algorithm
	幻灯片编号 47
	Distributed CSN Calibration
	Spanning-tree-based approach
	Belief-propagation approach
	Distributed Object-pose Estimation
	Consensus on SE(3)
	Consensus on 3-D points
	Action Recognition
	Consensus-based method
	Feature histograms-based method
	Conclusions and future directions
	Distributed and Decentralized Multicamera Tracking
	Background
	Introduction
	Model
	Calibration and synchronization
	幻灯片编号 63
	幻灯片编号 64
	Fusion centers
	Dynamic clustering example
	Decentralized Tracking
	幻灯片编号 68
	幻灯片编号 69
	Graph Matching
	Hidden  Markov Model(HMM)
	Particle Filter(PF)
	幻灯片编号 73
	Gaussian Mixture Particle Filter
	Tracking-Before-Detect Particle Filter
	Kalman Filter
	Distributed Tracking
	幻灯片编号 78
	Particle Filter
	Kalman Consensus Filter
	Quantifying communication and Computation Costs
	Modeling Costs
	Comparative example
	Discussion

