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Background 

• The emergence of Image Processing System 
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Challenges 

• Bandwidth limitations of networks 
• Computational load at nodes 
• Communication costs 
• System scalability 
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Solution 

• Distributed architecture 
– Advantage: without any global knowledge. 
– Challenge: resource constraints… 
– Objective: to minimize the penalty compared to a 

centralized solution. 
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Distributed Camera Networks 

[integrated sensing and analysis for 
wide-area scene understanding] 



Background 

• Consider a video cameras network 
– Manually analyzed. 
– Fixed Cameras 
– Acquire the desired resolution or viewpoint 

ineffectively. 
– Difficult in analysis of the video. 
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Background 

• A possible solution 
– To Integrate the analysis and sensing task more 

closely by controlling the parameters of a pan-tilt-
zoom(PTZ) camera network. 

– [Decentralized fashion] The cameras, acting as 
autonomous agents, analyze the raw data locally, 
exchange only distilled information and reach a 
global analysis. 
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Solution 

• A closed-loop framework 
• dynamic scene analysis in a reconfigurable, 

distributed PTZ camera network 
• Integrating a  number of component parts 

that have been studied more or less 
separately. 
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The Integrated System Structure 
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Data association 

• Joint Probabilistic Data-Association Filters 
(JPDAFs)[1] 
– Update the positions with a probabilistic fusion. 
– Exchange information with neighbors. 
– Associated the closest tracks to each other. 
– Fused together using a Kalman consensus filter. 

• A graphical method[2] 
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Distributed calibration 

• Average consensus-based methods[3] and 
graphical methods[4] for estimating 
calibration parameters. 

• Data association and calibration are closely 
interlinked. 
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Distributed tracking 

• Kalman-consensus tracker 
– Mathematical framework 

• .. 

– Algorithm description 
• .. 

• handoff in consensus-tracking algorithm 
– Target moves to overlapping/non-overlapping 

camera. 
– Sudden failure of camera 
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Reconfiguration 

• Optimal camera placement strategies 
• The path-planning strategy 

– Static cameras / PTZ cameras 

• Random occluding objects[centralized] 
• Distributed approach: 

– Expectation-Maximization(EM) 
– Multiplayer learning in games 
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Game-theoretic frameworks 

• Introduction 
– Multiplayer game: each camera is a player and 

interested in optimizing its own utility. 
– Local utility functions are aligned with the global 

utility function. 
– The agreeable setting: Nash equilibrium. 
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Game-theoretic frameworks 

• Model: 
      targets 

• A location vector, a resolution parameter 

      cameras 
• Camera             will select its own set of parameters                                              

,      is the parameter profile that      can select from, to 
optimize its own utility function             . 

                           is a pure Nash equilibrium if 
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Game-theoretic frameworks 

• Design utility functions 
o Target utility  

oView criterion:                                         ,where   
 

 

 
o Tracking criterion:                                              , where 

 
 

o P is the error-covariance matrices  
o F is the measurement matrix 
o R is the measurement-error covariance 
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o Global utility         
o  the desirability of the settings profile a 
o  the global utility function as,       
 

o The weight of targets V can be set based on the user’s input. 

o Camera utility 
oDefine as its marginal contribution to the global utility 

 
 

o                      is the parameter profile of all the cameras except  
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Game-theoretic frameworks 

• Optimization strategy(Nash equilibrium) 
 Random choice camera 
 Search for a set of parameters that maximizes its 

camera utility based on previous negotiation step. 
 Broadcast its choice to its neighboring cameras. 
 Until no cameras increase its own utility. 

• Nash equilibrium VS. EM approach  
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Experiment 

• Setup 
– Cameras connected through a wireless network. 
– Two tasks: 

• To cover the entire area(area coverage) 
• To cover the targets and the entry/exit regions(target 

coverage) 
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• Performance analysis 
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• Performance analysis 
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Discussion 

• Scalability 
– The data that need to be exchanged  

• information vector u(4x1) 
• information matrix U(4x4) 
• state estimate x(4x1) 
• PTZ parameters(finite) of cameras. 

• Latency 
– Does not have any effect on experimental results. 

• Accuracy 
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Comparative analysis 
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Future work 

o Robustness of the networks;  
o distributed data storage and retrieval; 
o Learning semantic models; 
o Performance analysis of complex distributed 

system; 
o Visualization tools, etc. 
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Distributed Computer vision 
algorithms 

[challenges faced in deployment of 
camera sensor networks] 



Background 

• Camera Sensor Networks(CSN) 
– Resource-constraints 
– To continuously observe the scene and carry out 

automatic analysis. 
– A centralized fashion can not address this issue. 
– Distributed computer vision algorithms promises 

to significantly advance the state of art in 
computer vision system. 

– But a number of fundamental challenges exist. 
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Challenges  
to traditional computer vision algorithms 
• Centralized computer vision algorithms apply to 

CSN deployments. 
– Communications and observations limited as CSNs are 

constrained by severe network capacity and energy 
constraints. 

– Collecting all the raw data at a single location is 
impractical for a CSN. 

– Many computer vision tasks cannot be performed in 
real time in a low-power computing platform. 

– Current work on CSNs often assumes that cameras are 
fully calibrated. 
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Challenges  
to traditional distributed algorithms 
• Distributed algorithms used to be developed  in a 

WSN apply to CSNs. 
– Images and videos are high-dimensional 

measurements.[scalability] 
– Plagued with noise, outliers, missing data and 

clutter.[robustness] 
– Information can be time varying.[dynamic] 
– The camera projection model, images and videos are 

nonlinear functions. 
– There are inherent ambiguities in the estimation of the 

state, which is not Euclidean.[nonlinear] 
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Challenges  
to traditional sensor network architectures 
• The classical distributed computer vision Alg. for 

WSNs can be extended for addressing following 
problems: 
– Vision-Graph Discovery 
– Distributed CSN Localization 
– Distributed CSN Calibration 
– Distributed Object-Pose 
– Distributed Action Recognition 
– Distributed Tracking(not covered) 
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CSN Model 

31 

• The communication graph: 

• The vision graph: 

• The nodes of the CSN: 

• The edge: 

• The set of neighbors of node i: 
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CSN Model 
• The pose of each camera node i : 

– Where SE(3) is the space of rigid-body transformations. Each element 

of SE(3) is composed of a rotation matrix 

 

– and  a translation vector  

• The standard projective camera model 
–  a 3-D point               to its image in the ith camera                                 , 

by the formula 
 

•             is the depth of the point X in camera i. 
•                 is an upper triangular matrix called the calibration matrix, which 

transforms the coordinates of an image point from metric to pixel coordinates. 
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Review of Distributed Alg. 

• Spanning-tree algorithms 
• Consensus algorithms 
• Belief-propagation algorithms 
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Spanning-tree algorithms 
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Consensus algorithms 
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Belief-propagation algorithms 
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• The marginal distribution 
• Markov can be factorized as 
• Using an iterative message-passing algorithm 

 
 
 
– b is called the belief at node i and an approximation of the marginal 

density p(zi)  [known as sum-product belief propagation] 
– If the state of node z and observation u is statistically independent, 

then the joint distribution as 



Vision-Graph Discovery 

• Feature extraction 
• Feature matching and vision-graph discovery 
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Feature extraction 

• Photometric features 
– Traditional choice 

• Scale-invariant feature transform (SIFT) 
• Speeded up robust features (SURF) 
• Histogram of oriented gradient (HOG) 

– Drawback  
• Require the variation of the image intensities to be rich 

enough. 
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Feature extraction 

• Activity features 
– Standard motion-detection algorithm 

• Background subtraction 
• Hypothesis testing and robust fitting 

– Advantage 
• Providing correspondences for regions with low texture 

– Drawback  
• The scene must be nonstatic 
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An example of activity features 
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Feature matching and vision-graph 
discovery 
• Reduce the burden of match high-dimensional feature 

– Select and transmits the most discriminant SIFT features. 
– Compress feature 

• Compress into a feature digest using PCA etc. 
• Transform the features into binary vectors using CHoG etc. 

– Use the feature digest from other camera to reconstruct its 
feature descriptors. 

• Reduce the number of image pairs 
• The transitivity of the correspondences 
• The theory of random graphs 
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Distributed structure from motion(SfM) 

• Model 
– Consider N cameras with unknown poses {g=(R,T)} 

observing P 3-D points at P unknown locations. 
• The goal of camera localization is to estimate the camera poses 

from the images taken by N cameras. 
• The goal of 3-D reconstruction is to find the locations of the 3-D 

points observed by N cameras. 
 

• The combination of two is SfM. 
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• Solve the SfM in a centralized fashion 
– Assumption 

• All the cameras have an intersecting field of view. 
• The 3-D scene is static 

– Objective function 
• Minimizing the reprojection error 

 
 

– where                          represents the perspective projection model 

• Nonlinear optimization problem 

• Solve the SfM subtasks(CSN localization and 
calibration) in distributed fashion 
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Distributed CSN localization 

• Assumption 
– The vision graph is known 
– The feature matches are known and contain no errors. 
– The feature points are corrupted small-to-moderate amounts of noise 

but not by outliers. 
– the calibration parameters K are known. 

• Possible approach 
– Spanning-tree-based approach 
– Consensus-based approach 
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Spanning-tree-based algorithm 
• Model 

– Each camera is equipped with a blinking LED and accelerometer. 
– Some of the cameras are in the direct line of sight. 

• algorithm 
• Pairs of cameras that are visible to each other can uniquely determine 

their relative rotation. 
• Then, using a spanning-tree algorithm to setup a linear system of 

equations and recover also the relative translation. 
• Improve 

• Bundle adjustment 
• Evaluate 

• Not require extracting or matching any feature from the image. 
• Require more hardware; more restrictive assumption. 
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Consensus-based algorithm 

• Model 
– Based on two-view geometry to recover noisy estimates  
     of their relative poses. 
– A gradient descent in SE(3) for minimizing the cost function 

 
 

• The consistency constraints are not distributed. 
– A cycle-distributed solution 

• Sharing the information between each node and all the cycles it belongs to. 
– Reparameterizing 

• Using absolute poses(Ri,Ti), rather than the relative poses(Rij,Tij). 
• Results in a local update, the gradient of the cost function is distributed. 
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• experiment 
– On a network of N = 7 cameras looking at a scene with 30 3-D points 
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• This approach is more geometric in nature 
• The main limitation of this method is that the optimization problem 

is nonconvex, hence, a good initialization is critical. 
 



Distributed CSN Calibration 

• Challenge 
– Calibrating a single camera do not scale well for CSNs. 
– Several autocalibration methods calibrate the cameras by solving 

nonlinear equations such as Kruppa’s equation.[numerically ill] 
– The camera have different intrinsic parameters. 

• Possible Solution 
– Integrating visual information across the network 

• Spanning-tree-based approach 
• Belief-propagation approach 
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Spanning-tree-based approach 

• Find some of the unknown calibration parameters in addition 
to the relative camera pose. 

• Start from the calibrated camera and use its correspondences 
to localize and calibrate all its neighbors 

• Information is propagated along a spanning tree of the 
network. 
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Belief-propagation approach 
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Distributed Object-pose Estimation 

• Model 
 
 
 
 
 

• Consensus on SE(3) 
• Consensus on 3-D points 
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Consensus on SE(3) 

• Model 
– Consider the geodesic distance in the space of rotations SO(3), We 

denote such a distance as                                                 . We can then 
define the Fréchet mean                 of the N measurement      as the 
point in SO(3) that globally minimizes the sum of squared geodesic 
distances, 
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Consensus on 3-D points 
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Action Recognition 

• Consensus-based method 
• Feature histograms-based method 
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Consensus-based method 
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Feature histograms-based method 
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Conclusions and future directions 
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Distributed and Decentralized 
Multicamera Tracking 

[Accurate and energy-efficient 
algorithms] 



Background 

• The decreasing cost of cameras and advances in 
miniaturization have favored the deployment of large-scale 
camera networks. 

• The growing number of cameras enables new signal-
processing applications that cooperatively use multiple 
sensors over wide areas. 

• Object tracking is an important step in many applications 
related to security, traffic monitoring , and event recognition. 
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Introduction 

• Discuss decentralized and distributed 
multicamera tracking approach 
– Cover common algorithmic steps 

• Calibration and Synchronization 
• The selection of fusion centers 

– Compare specific tracking approach. 
• Decentralized trackers 
• Distributed trackers 
• Quantifying communication and computation cost 
• Comparative example 
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Model 

• Consider a network                                    of N cameras 
monitoring T targets. 

• The state of target i at time k be defined as      ,where  
                    represents either the cth camera view or an 
    hypothetical top view π (plane). 
• State: position, shape, velocity, size, contour, etc. 
• Target state estimation on v aims to associate noisy 

measurement                           to obtain the trajectory 
                                for each object i. 
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Calibration and synchronization 

• Multicamera fusion can be performed through 
correspondence between measurement      or 
trajectories. 
– Measurement correspondence: 

• Map the features                                      from each camera view to a 
common view V using a project matrix H, 
 

• The correspondence between feature points is performed using a 
similarity measure(Euclidean distance, color histogram similarity). 

• The occupancy mask of a target can be projected to obtain an 
aggregated occupancy on a common view. 
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– Trajectory correspondence: 
• The states of the object are projected from each view to a 

common view using H, 
 

• After projection, the tracks                                                            from 
different camera are put in correspondence. 

– The projection matrix H: 
• Computed by selecting control point[24] 
• Using the scale-invariant feature  
     transform(SIFT) 
• Using three-dimensional feature points 
• Using the relative position and orientation  
    of the sensors in nonoverlapping cameras. 

 

63 

, , , ,c v i c v c i
l kx x= Η

, , , , , ,
1 1,..., ; 1,...,{ ,..., }c v i c v i c v i

k k c N i MX x x = ==



• Synchronization  
– Through a centralized server 

• distributes timestamp information or through a event. 

– Automatic synchronization method 
• Introduce a temporal shift 
• To rectify the temporal shift between measurement. 
• Remaining temporal shifts are handled as uncertainty during 

target-state estimation. 
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Fusion centers 

• Fixed fusion center 
– Higher processing power and energy supply 
– Generate lower-quality observations. 

• Dynamically clustering 
• Based on trackablility measures 
• Best-view selection 
• Not necessarily use the best cameras for tracking 
• Online camera clustering  
• Improve scalability and robustness against node failures 
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Dynamic clustering example 
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Decentralized Tracking 

• Graph Matching(GM) 
• Hidden  Markov Model(HMM) 
• Particle Filter(PF) 
• Gaussian Mixture Particle Filter 
• Tracking-Before-Detect Particle Filter(TBDPF) 
• Kalman Filter(KF) 
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Graph Matching 
• Model 

• Vertices: measurements at the entry and exit point. 
• The edge between two vertices      and     , is weighted by their 

similarity  
• Algorithm 

•  find the maximum-weight path cover over a certain number of 
consecutive time steps 

• The complexity:  
• Improve 

• Deal with Overlapping field of view: projected onto a top-view plane 
π,then GM is applied on generated occupancy map. 

• Improve accuracy: using a multilevel; the collaboration between the 
cameras and their fusion center. 
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Hidden  Markov Model(HMM) 

• Model 
• The search area(occupancy mask) is divided into a regular 

grid(C,V). 
• Estimate the probability of the measurement and the state 

ending at location a at time k. The posterior is  
 
–                               is the set of projected occupancy masks from the 

set      of cameras observing the target. 
–                            is computed based on the color similarity   
– Solved by the Viterbi algorithm 

• Then project to each view for validation. 
• Drawback: Delay 
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Particle Filter(PF) 

• Sampling importance resampling(SIR) 
– Estimate the posterior probability density function, 

 
– The particle weights are updated based on the likelihood 

as  
 

• Where         is the importance density function. 
•                         is the likelihood function. 
•                         is the transition density defined by the target motion. 
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• Adopted strategy 
– Running one PF on the fusion center 

• Project the object height onto the top view, then 
backproject to the view. 

• The final likelihood for the weight update is computed 
as 
 

– Using an distance based on the Bhattacharyya coefficient. 

– Using multiple centers fusion 
• The product of likelihoods                      , can be 

approximated with a parametric model  
– Where       are the learned parameters for camera c. 

– Quantization, vectorization and parameterzation. 
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Gaussian Mixture Particle Filter 

• PF is computationally expensive because of the use of 
multiple particles. 

• Individual PFs can run in parallel in each node. 
• The local sufficient statistics(belief) is approximated by a low-

dimensional Gaussian mixture model as 
 

 
– Where    is the number of Gaussians 
–                        are the mean and standard deviation of the Gaussian.  
– Converge almost surely to the posterior distribution estimated with a 

centralized Bayesian formulation. 
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Tracking-Before-Detect Particle Filter 
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Kalman Filter 
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Distributed Tracking 

• Particle Filter 
• Kalman Consensus Filter 
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Particle Filter 
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Kalman Consensus Filter 
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Quantifying communication and 
Computation Costs 
• Modeling Costs 
• Comparative example 
• Discussion 
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Modeling Costs 
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Comparative example 
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Discussion 
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