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Introduction 

• Motivation: How detection and recognition 
behavior from video sequences ? 

3 



Introduction 

• Motivation: How recognize and localize 
multiple actions in long and complex video 
sequences containing multiple motions ? 
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Frameworks 
Input/labeled data 

Test video 

Feature Extraction 

Descriptors 

Classification 

Learn models 

Classifier 

Recognition 

… … 

… … 
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Feature Extraction 
• Interest point detection 

– Response function:  
 
 
 
 
 

 
• A Cuboid 

– A cuboid is extracted which contains the spatio-temporally 
windowed pixel values. 

– Size(x, y, t) :   
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Interest Points visualization 

Type: Walk 
\sigma = 1.5 
\tau = 1.5 
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The Cuboid visualization 

Type: Walk 
\sigma = 1.5 
\tau = 1.5 
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Feature Extraction(cont.) 
• Cuboid to a feature vector 

– Gaussian smoothing (at different scale, \sigma) 
– Calculate the brightness gradient (G_x,G_y,G_t) at 

each spatio-temporal location (x, y, t) 
– string out vector 

• Dimensionality reduction: PCA  
– Random subsample cuboids from all data 
– Calculate the first k principal components by PCA.  

(setting k = 100) 
– Project the centralized feature vectors into the new 

basis. (N x k) 
– (PCA-SIFT descriptor) 
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Principal components are descending sorted by the corresponding 
variances. 
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Feature Description 

• Cuboid Prototype 
– Create a library of cuboid prototype by clustering the  

cuboids descriptors. 
– Using K-means and Euclidean distance, setting k=50 

• Behavior Descriptor 
– Use a histogram of the cuboid types as the behavior 

descriptor. 
– Distance between histograms: chi-squared distance 
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a) Walk  b) Run 

c) wave2  d) jump 

Histogram Descriptor Samples: 
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Classification 

• Simplest method: 1-NN 
– Find nearest neighbors based on chi-squared 

distance. 
• Support Vector Machine 

– Use Norm2 SVM (least square SVM) 
– Use chi-squared Kernel 

 
– Multiclass SVM: one-versus-the-rest 

• appropriate scale 
• Imbalance: Positive class: +1; negative class: -1/(K-1) 
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A Brief Intro. to SVM 

Optimization methods:  
1) Quadratic Programming(QP): Chunking(Vapnik, 1982, Burges,1998)  
2) Sequential minimal optimization, or SMO (Platt,1999) 
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A Brief Intro. to LS-SVM 

• Lost  the sparseness  
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Multi-actions categories Framework 
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Multi-actions categories scheme 
• Feature Extraction: Cuboid descriptor(PCA-SIFT) 
• Build vocabulary(codebook):  

– by clustering using k-means and Euclidean distance, k = 1000 
• Label each codeword (w_i) with a topic/category (z_k)  

– Assign each interest point (training) to a codeword 
– By maximizing the posterior P(z_k | w_i) 

• Assign detected interest points a topic 
– By assign each point to a codeword 

• Topic Localization 
– how many action categories are significantly in a single 

sequence? 
–  k-means to the spatial position of space-times patches. 
– Each word votes for its assigned action within its cluster. 
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• Topic Localization(cont.) 
• how many action categories are significantly in a 

single sequence? 
• Tuning parameters. 

 
 
 
 
 
 
 

• We call this method Voting. 
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SVM Classifier on 
Toy dataset 

Accuracy: 
2 class: 0.9600 
3 class: 0.9200 
4 class: 0.8600 
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Experiment 1: Weizmann dataset 
• Dataset Setup 

– Weizmann human action dataset [1] 
• Contains 90 low-resolution (180x144,50fps) video sequences 

showing 9 different people, each performing 10 actions (bend, 
jack, jump, pjump, run, side, skip, walk, wave1,wave2) 

[1] http://www.wisdom.weizmann.ac.il/~vision/SpaceTimeActions.html 

wave1 walk wave2 side 

jack jump run bend 24 



Result: Weizmann by 1NN 
• \sigma = 1.2, \tau = 1.2,  
• maxn(interest points) = 200 
• Kpca = 100 
• Divide into 9 subset 
• Leave-one-out test  
• Repeat: 5 times 
• Overall accuracy: 0.7933 
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Result: Weizmann by LS-SVM 

Polynomial: 
0.7556 Linear: 

0.7467 

RBF: 
0.1000 

Chi-squared: 
0.1022 
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Result: Weizmann by Voting  
• \sigma = 1.2, \tau = 1.2, 

maxn(interest points) = 200 
• Kpca = 100 
• ncodeword = 1000 
• Divide into 9 subset 
• Leave-one-out test  
• Repeat: 5 times 
• Overall accuracy: 0.7333 
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Experiments 2: KTH dataset 
• Dataset setup: 

– KTH human action dataset [2] 
• Contains 6 types of human actions ( walking, jogging, running, 

boxing, hand waving and hand clapping) preformed by 25 difference 
people in 4 different scenarios of outdoor and indoor environment 
with scale change. 

• Total 598 (160x140) video sequences 

 

Great thanks to xcy for downloading the dataset. 
[2] http://www.nada.kth.se/cvap/actions/ 

boxing handclapping jogging handwaving 

running walking 28 



Result: KTH dataset by 1NN 
• \sigma = 2, \tau = 2.5, 
• maxn(interest points) = 300 
• Kpca = 200 
• Divide into 25 subsets 
• Leave-one-out test  
• Repeat: 5 times 
• Overall accuracy: 0.8179 
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Result: KTH dataset by LS-SVM 

Polynomial 

RBF 

Linear 

Linear: 0.7844 
Polynomial: 0.7996 
RBF: 0.1656 
Chi-squared: 0.1624 

Chi-squared 
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Result: KTH dataset by Norm1 SVM 

Linear: 0.7429 
Polynomial: 0.8146 
RBF: 0.1873 
Sigmoid: 0.2309 

Linear Polynomial 

RBF Sigmoid 
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Result: KTH dataset by Voting 
• \sigma = 2, \tau = 2.5, 

maxn(interest points) = 300 
• Kpca = 200 
• Ncodeword = 1000 
• Divide into 25 subset 
• Leave-one-out test  
• Repeat: 5 times 
• Overall accuracy: 0.9047 
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Experiments 3: Multi-Actions 

• Thanks to Lin**, liu*, wang** 
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Result by Voting Scheme 
• Using the Weizmann dataset for training(\sigma 

= 1.2, \tau = 1.2) 
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Result by Voting Scheme(cont.) 
• Using the KTH dataset for training(\sigma = 2, 

\tau = 2.5) 
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Any Question ? 
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