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Distributed Learning of Predictive Structures
From Multiple Tasks Over Networks

Junhao Hua, Chunguang Li, Senior Member, IEEE, and Hui-Liang Shen

Abstract—This paper is concerned with the problem of
distributed multitask learning over networks, which aims to
simultaneously infer multiple node-specific parameter vec-
tors in a collaborative manner. Most of the existing works
on the distributed multitask problem modeled the task re-
latedness by assuming some similarities of parameter vec-
tors in an explicit way. In this paper, we implicitly model
the similarity of parameter vectors by assuming that the
parameter vectors share a common low-dimensional pre-
dictive structure on hypothesis spaces, which is learned
using the available data in networks. A distributed structure
learning algorithm for the in-network cooperative estimation
problem is then derived based on the block coordinate de-
scent method integrated with the inexact alternating direc-
tion method of multipliers technique. Simulations on both
synthetic and real-world datasets are given to verify the ef-
fectiveness of the proposed algorithm. In the case that each
node shares a common predictive subspace, it is demon-
strated that the proposed multitask algorithm outperforms
the noncooperative learning algorithm. Moreover, the use
of the inexact approach can significantly reduce the com-
munication bandwidth and still provide the same optimal
solution as the corresponding centralized approach.

Index Terms—Alternating direction method of multipli-
ers (ADMM), data-driven, distributed estimation, multitask
learning, wireless sensor network.

I. INTRODUCTION

S ENSOR networks are composed of a large number of
small low-power drives (nodes) distributedly deployed in

resource-limited environments to execute some tasks, such as
detection, tracking, and object classification [1], [2]. In recent
years, the problem of distributed estimation over sensor net-
works, where the nodes cooperatively estimate some parame-
ter of interest using local noisy measurements and information
obtained from one-hop neighbors, has attracted significant at-
tention [3]–[6]. Compared with the centralized estimation, the
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distributed estimation scheme does not need a powerful fu-
sion center, so it is more flexible and provides robustness to
node and/or link failures. In the fully distributed scheme, each
node only communicates with its one-hop neighbors, which
will help save energy and bandwidth. Due to these merits, dis-
tributed estimation has been used in a wide range of fields,
including environmental monitoring [7], industrial automation
[8], and military surveillance [9]. A plenty of algorithms have
been proposed for distributed estimation over networks, such as
consensus-based [10], diffusion-based [3], and alternating di-
rection method of multipliers (ADMM)-based algorithms [11].

The previous studies on distributed estimation problems have
intensively focused on the scenarios where all nodes in a net-
work collaboratively estimate a single parameter vector [12]–
[14]. The problems of this type are referred to as single-task
problems. Recently, a handful of studies extend this setting to
the multitask problems [15]–[17]. In this setting, multiple op-
timum parameter vectors to be inferred simultaneously by the
network are different but related. In fact, in many important
real-world in-network applications including pattern classifica-
tion and regression, the tasks among nodes may be different
and the number of available measurements for each task is quite
limited. If the network learns each task independently, the es-
timation performance of the resulting predictors may be very
poor. Alternatively, by learning these multiple tasks simultane-
ously, the relatedness of tasks among nodes can be exploited to
improve estimation accuracy.

Previous works [15], [16] on distributed multitask estima-
tion have modeled the task relatedness through assuming that
the optimum parameters at two connected nodes are close to
each other in an Euclidean norm. However, this assumption
cannot be always satisfied in practical applications. In machine
learning community, a plenty of works focus on learning a low-
dimensional feature representation from multiple tasks [18]–
[21]. This framework has been successfully applied in several
machine learning applications, such as natural language tag-
ging [18], optical character recognition [20], and automated
images annotation [21]. In this paper, we focus on developing a
distributed multitask learning (dMTL) algorithm based on this
framework for sensor networks.

Specifically, we model the task relatedness by assuming that
multiple tasks among all nodes share a low-dimensional predic-
tive structure on hypothesis spaces [18], [21]. This assumption
works in many practical applications. For example, suppose that
each node in a network has its own image classification task,
although the natural scene images obtained from different nodes
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may belong to different categories, the underlying image pat-
terns for all nodes may have similar feature representations in
the form of a linear combination of certain bases. With this as-
sumption, we expect that by cooperatively learning these tasks
over a network, we can find some shared low-dimensional struc-
tures with highest predictive power to improve estimation and
generalization performance of each single task. In the distributed
estimation context, structure learning from multiple tasks has
not been well studied yet. One relevant study [17] considers the
online multitask learning where the node hypothesis spaces par-
tially overlap. However, it assumes that the overlap of hypothesis
subspaces is known in advance, which limits its applicability.

In this paper, we consider the situation where the shared pre-
dictive structure is unknown, and we learn it only using the
available data from all nodes. The aim of this paper is to en-
hance estimation performance in a multitask network by learn-
ing the common predictive structure with distributed strategies
based on local data and information exchange between one-hop
neighboring nodes. Specifically, we formulate a distributed es-
timation framework for learning common predictive structures
from multiple tasks in a sensor network, and then derive a com-
putationally inexpensive and energy-saving dMTL algorithm for
this framework based on the block coordinate descent (BCD)
method integrating with the inexact ADMM iterations.

The rest of this paper is organized as follows. In Section II,
we formulate the problem of distributed multitask estimation
over networks. In Sections III and IV, we propose the dMTL al-
gorithm, and present the detailed computations of subproblems,
respectively. In Section V, numerical simulations are presented
to illustrate the effectiveness and advantages of the proposed
algorithm. Finally, conclusion is drawn in Section VI.

II. PROBLEM FORMULATION

A. Network Model

We consider a connected sensor network consisting of N
nodes distributed over a geographic region. We use graphs
to represent networks. The considered undirected graph with-
out a self-loop G = (V, E) consists of a set of nodes V =
{1, 2, . . . , N} and a set of edges E , where each edge (k, l) ∈ E
connects an unordered pair of distinct nodes. For each node
k ∈ V, letNk = {l|(k, l) ∈ E , k �= l} be the set of its neighbor-
ing nodes (excluding node k itself). Each node k collects/stores
a small number (Nk ) of measurements {(xk,i ,yk,i)}Nk

i=1 ⊂
Rp ×R with xk,i denoting an input vector and yk,i denoting
corresponding scalar output.

The task of each node k is to seek a predictor fk that maps
each input vector xk,i to the corresponding output yk,i . For
simplicity, we employ linear prediction models for all tasks. At
each node k, a linear predictor is defined as

fk (x) := uT
k x (1)

where uk ∈ Rp is a weight vector. Thus, the task of each node
k becomes to seek the optimum parameter vector uk using the
input and output data {(xk,i ,yk,i)}.
B. Formulation of dMTL

As discussed in Section I, previous works on distributed esti-
mation intensively studied the problem of the single task learn-

ing, in which all nodes in a network collaboratively estimate
a common parameter vector, i.e., uk = u∗∀k. In contrast, the
problem considered here assumes that the tasks across all nodes
are different, i.e., uk �= uj∀k, j ∈ V , but related to some ex-
tent. We learn these tasks simultaneously and exploit the task
relatedness to enhance the estimation performance of each node.

In [18], the researchers proposed the alternating structure op-
timization algorithm for learning predictive functional struc-
tures from multiple related tasks. It learns all N predictors
{f1 , . . . , fN } simultaneously by exploiting a shared feature
space in a simple linear form of low-dimensional feature map
Θ across the N tasks. Following this approach, we express the
prediction function fk as

fk (x) = uT
k x = wT

k x + vT
k Θx = (wk + ΘT vk )T x (2)

where wk ∈ Rp , vk ∈ Rh (h < p) are weight vectors specific
for each node, and Θ ∈ Rh×p is the common structure parameter
with orthonormal constraint

ΘΘT = Ih . (3)

To find predictors {f̂1 , . . . , f̂N } simultaneously, we could min-
imize a joint empirical risk function using the measurements
{(xk,i ,yk,i)}Nk

i=1 , k ∈ V . Formally, we define a local empirical
loss function at node k as

Lk (uk ) =
1

Nk

Nk∑

i=1

L(uT
k xk,i ,yk,i) (4)

where the loss function L(·) is assumed to be convex and smooth
for simplicity. The regularization method is then applied to en-
code our belief on what values the structure parameter Θ and
model parameter vectors {uk} are. There are many possible
choices of regularization functions, such as l2-norm [18], l2,1-
norm [19], and elastic net [22]. We use the regularization func-
tion proposed in [21] for our formulation. Mathematically, the
optimization for the multitask learning problem is formulated
as

min
{uk ,vk },Θ

N∑

k=1

(
Lk (uk ) + gk (uk ,vk ,Θ)

)

s.t. ΘΘT = Ih (5)

where the regularization function gk (uk ,vk ,Θ) is defined as

gk (uk ,vk ,Θ) = αk‖uk −ΘT vk‖2 + βk‖uk‖2 . (6)

The first component ‖uk −ΘT vk‖2 = ‖wk‖2 represents the
task relatedness among N tasks, and the second component
‖uk‖2 controls the complexity of the predictor function fk .
The prespecified coefficients αk , βk indicate the importance of
the corresponding regularization components, respectively. For
simplicity, we use the same β = β1 = · · · = βN > 0 and α =
α1 = · · · = αN > 0 for all tasks.

C. Convex Relaxation

Note that the formulation (5) is nonconvex due to its orthonor-
mal constraint and the regularization term. Following [21], we
convert the nonconvex formulation (5) into a relaxed convex
one, which admits a globally optimal solution.
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We first consider the orthonormal constraint in (5), which
is nonconvex. We defineMe = {M ∈ Rp×p |M = ΘT Θ,ΘΘT

= Ih ,Θ ∈ Rh×p}. It is known that the convex hull ofMe can
be precisely expressed as the convex set [23]

M = {M ∈ Rp×p |tr(M) = h,0 �M � Ip}. (7)

Each element inMe is referred to as an extreme point ofM,
andM is the smallest convex set that containMe .

We next transform the regularization term. With fixed uk and
Θ, it can be verified that the optimal value v∗k in the problem
(5) is achieved at

v∗k = Θuk = arg min
vk

gk (uk ,vk ,Θ). (8)

By eliminating vk , we rewrite the regularization term (6) as

G0
k (uk ,Θ) = gk (uk ,v∗k ,Θ)

= αuT
k

(
(1 + η)Ip −ΘT Θ

)
uk (9)

where η := β/α > 0.
Moreover, using the fact that (1 + η)Ip −ΘT Θ = η(1 +

η)(ηIp + ΘT Θ)−1 , which can be verified using the matrix in-
version lemma [24] and the orthonormal constraint in (5), we
first reformulate G0

k (uk ,Θ) into an equivalent form given by

G1
k (uk ,Θ) = αη(1 + η)uT

k (ηIp + ΘT Θ)−1uk . (10)

We then make a relaxation by replacing ΘT Θ in (10) with
M ∈M in (7) and get a new regularization function

Gk (uk ,M) := αη(1 + η)uT
k (ηIp + M)−1uk . (11)

It follows from [25, Th. 3.1] that Gk (uk ,M) is jointly convex
in uk and M .

Thus, the nonconvex problem (5) is converted into a relaxed
convex optimization problem

min
{uk },M ∈M

R({uk},M) (12)

where the objective functionR : Rp×N × Sp
+ → R is

R({uk},M) =
N∑

k=1

(
Lk (uk ) + Gk (uk ,M)

)
. (13)

The optimization problem (12) has a larger feasible domain
set compared to the problem (5), since the construction M =
ΘT Θ is guaranteed to be feasible in (12), while a specific M
may not be decomposed to ΘT Θ such that Θ is feasible in (5).
Nevertheless, the optimal Θ of (5) can be approximated using
the first h eigenvectors of the optimal M computed from the
problem (12).

In the next section, we use the BCD method to minimize
the objective function, whose convergence is guaranteed by the
condition that the objective function is jointly strictly convex in
{uk} and M . We present a further modification of the objective
function (13) by introducing a small perturbation, which is sim-
ilar with that in [19] and [25]. The perturbed objective function
Rε : Rp×N × Sp

+ → R is given by

Rε({uk},M) =
N∑

k=1

Lk (uk ) + Gε({uk},M) (14)

where the regularization term is defined as

Gε({uk},M) := αη(1 + η)tr
(
(εIp +

N∑

k=1

ukuT
k )

× (ηIp + M)−1) (15)

and the small parameter ε > 0. The objective function Rε ap-
proaches R as ε→ 0. The function f(M) = tr((ηIp + M)−1)
is strictly convex, since ηIp + M is positive definite and
f(X) = tr(X−1) is strictly convex on positive definite matrices
[24]. Based on this and following the fact that Gk (·, ·) is jointly
convex in uk and M and strictly convex in uk , we conclude that
the perturbed function Gε is jointly strictly convex in {uk} and
M . Therefore, for any convex smooth loss function Lk (·), the
objective functionRε(·, ·) has a unique minimizer.

III. DISTRIBUTED MULTITASK LEARNING

Before presenting the distributed algorithm for the problem
(12) in the considered network, we would like to first present the
centralized algorithm, in which the data from every node can be
gathered in a fusion center, and the computation is performed
in the fusion center. After that, we propose the distributed algo-
rithm of the multitask learning problem over networks.

A. Centralized Multitask Algorithm

Based on the BCD method [26], we alternatively minimize
the perturbed objective function Rε with respect to {uk} and
M , and the algorithm can be written as the following two steps

ut
k = arg min

uk

Rε({uk},Mt−1) ∀k ∈ V

= arg min
uk

Lk (uk ) + Gk (uk ,Mt−1) ∀k ∈ V (16a)

Mt = arg min
M ∈M

Rε({ut
k},M)

= arg min
M ∈M

Gε({ut
k},M)

= arg min
M ∈M

tr
(
(εIp +

N∑

k=1

ut
kut,T

k )(ηIp + M)−1) (16b)

where t = 1, 2, . . . is an iteration step.
We now present some convergence properties of (16). First,

by construction, we observed that the values of the objective are
nonincreasing, that is,

Rε({ut−1
k },Mt−1) ≥ Rε({ut

k},Mt−1) ≥ Rε({ut
k},Mt).

These values are bounded, since Lk (·) is bounded from below,
and thus, the iterates of the objective function converge. More-
over, the sequences {({ut

k},Mt)} also converge as stated in the
following theorem.

Theorem 1: For every ε > 0, let {({ut
k},Mt)} be the se-

quence generated by (16a) and (16b). Then, the whole sequence
{({ut

k},Mt)} converges to a unique global minimizer of Rε

subject to the constraints M ∈M.
Based on [26, Proposition 2.7.1] and the joint strictly convex

property of the objective function Rε , Theorem 1 can be easily
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proved. From the definition of Rε , it is clear that the minimal
value of Rε decreases with the decreasing of ε and converges
to the minimal value of R as ε→ 0. Moreover, since Rε is
continuous in ε, {uk} and M , the minimizer {({u∗k},M ∗)} of
Rε converges to the set of the minimizers of R as ε→ 0. To
ensure the joint strict convexity of Rε , meanwhile, keeping the
minimizer of Rε close to that of R, we set ε to an extremely
small value in the following.

B. dMTL Framework

In this section, we extend the centralized algorithm (16) to the
distributed scenario where every node in the network only com-
municates with its one-hop neighboring nodes. The main diffi-
culty in doing this is that the updating of the common structure
parameter M in (16b) needs all parameter vectors {uk}, which
is nontrivial in a fully distributed network. Consider replacing
the common structure parameter M in (14) with auxiliary per-
node variables {Mk}Nk=1 , thus we need to make an agreement
on the parameters {Mk} among all nodes.

We propose a computationally inexpensive and energy saving
strategy to deal with this problem. The key observation is that the
computation of (16b) only depends on an intermediate quantity

Z̄ :=
1
N

N∑

k=1

ukuT
k ∈ Rp×p (17)

which is an average of all local quantities {ukuT
k }Nk=1 . If a

cyclic path through all the nodes could be found, then an incre-
mental algorithm can be derived by collecting all local quantities
through the path. However, it is not practical in a low-cost net-
worked system, since the communication resources are limited
and exploring the network topology is hard and expensive. Note
that the optimal value of the following optimization problem is
equal to Z̄ in (17):

Z∗ = arg min
Z

N∑

k=1

‖Z − ukuT
k ‖2F (18)

where ‖ · ‖F is the Frobenius norm. This can be reformulated
to an equivalent distributed form. Let us define a set of per-node
intermediate quantities {Zk}Nk=1 , and add consensus constraints
to force these variables to agree across neighboring nodes. Thus,
the optimization problem in (18) is recast as the consensus-based
distributed problem

min
{Zk },{Wk j }

N∑

k=1

‖Zk − ukuT
k ‖2F

s.t. Zk = Wkj ,Wkj = Zj ∀k ∈ V, j ∈ Nk (19)

where the auxiliary variables Wkj ∈ Rp×p decouple local vari-
ables Zk at node k from those of their neighbors Zj , j ∈ Nk .
This formulation is equivalent with (18) as stated in the follow-
ing lemma [27], [29].

Lemma 1: If the graph G is connected, the problem (18) and
(19) are equivalent, that is, Z∗k = Z∗,∀k ∈ V , where {Z∗k} is
the solution of (19) and Z∗ is the solution of (18).

Proof: Consider any two nodes k0 , kl ∈ V . Since the net-
work is connected, there exists a path {k0k1 , . . . , kl−1kl} con-
necting nodes k0 and kl . Because ki+1 ∈ Nki

for i = 0, 1, . . . , l
− 1, we have {Zki

= Wki ki + 1 ,Wki ki + 1 = Zki + 1 }. It is imme-
diate that Zk0 = Zk1 = · · · = Zkl

. Since k0 , kl are arbitrary,
it follows that Z1 = Z2 = · · · = ZN . As any feasible solution
of (19) satisfies Z1 = Z2 = · · · = ZN = Z, problem (19) be-
comes (18). �

Based on the distributed formulation (19), we now present
a distributed algorithm in replace of the centralized one (16)
to minimize the perturbed objective functionRε . The proposed
distributed BCD algorithm executes the following three steps
iteratively until convergence:

ut
k = arg min

uk

Lk (uk ) + Gk (uk , Mt−1
k ) ∀k ∈ V (20a)

{Zt
k } = arg min

{Z k },{W k j }

N∑

k=1

‖Zk − ut
k ut ,T

k ‖2F

s.t. Zk = Wkj , Wkj = Zj ∀k ∈ V, j ∈ Nk (20b)

Mt
k = arg min

M k

tr
(
(εIp + Zt

k )(ηIp + Mk )−1)

s.t. tr(Mk ) = h, 0 �Mk � Ip ∀k ∈ V. (20c)

Note that (20a) and (20c) are carried out locally at each node,
and the computation of (20b) needs the collaborations among
neighboring nodes and hence costs communication resources.
In detail, at step (20a), every node k learns its parameter vector
uk based on its own structure parameter Mk . After that, each
node k collaboratively computes its own intermediate quantity
Zk by exchanging information with its neighboring nodes. If the
solution of (20b) is exact, all intermediate quantities {Zk} are
equal to Z̄ in (17) as stated in Lemma 1. Thus, the optimums of
{Mk} at step (20c) among all nodes are also equal. Therefore,
we can obtain the minimizer ofRε via the distributed procedure
(20).

However, at every BCD round, if we compute the solution of
(20b) exactly, it may lead to communication overhead, since it
may need many iterations to reach the exact one. Therefore, to
save energy and bandwidth, we would like to compute the inex-
act but good enough solution of (20b), which will be presented
and discussed in the next section.

IV. COMPUTATION OF SUBPROBLEMS OF DISTRIBUTED

MULTITASK ALGORITHM

We now present the detailed algorithms to solve the min-
imization subproblems (20a), (20b), and (20c). Note that we
have used the subscript t to denote the iteration step (outer iter-
ation) of the BCD iterations. If iterative methods are applied to
solving the subproblems at iteration t, we use the subscript l to
denote the lth iteration (inner iteration) and omit t for notational
simplicity.

Using previous estimates {Mt−1
k }, the computation of (20a)

is carried out locally at every node. We apply accelerated
gradient descent (AGD) methods [28] to solving (20a). For
any convex smooth loss function Lk (·), the objective func-
tion in (20a) is strictly convex, and hence, the corresponding
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Algorithm 1: Solving (20a) via the APG Method.

Input: Given Mt−1
k and u

(0)
k = u

(−1)
k = 0.

1: for l = 1, 2, . . . , do
2: τl is a fixed step size or determined by line search.

3: u
(l− 1

2 )
k = u

(l−1)
k + l−2

l+1 (u(l−1)
k − u

(l−2)
k ).

4: u
(l)
k = u

(l− 1
2 )

k − 2τlα
(
(1 + η)Ip −Mt−1

k

)
u

(l− 1
2 )

k

5: −τl∇uk
Lk (uk )

∣∣∣
u

( l− 1
2 )

k

.

6: if the stopping criterion is satisfied then
7: exit the loop
8: end if
9: end for
Output: ut

k = u
(l)
k .

optimization problem admits a unique minimizer. The detailed
AGD algorithm for (20a) at node k is given by Algorithm 1.

A. Distributed Computation of Zk in (20b)

We could use a dual-decomposition method for the separated
objective function (20b). However, using the augmented La-
grangian can bring robustness to the dual ascent method [11],
so we use this method below. Let Ωkj1 (Ωkj2) denotes the La-
grange multiplier corresponding to the constraint Zk = Wkj

(respectively Wkj = Zj ), and we construct the augmented La-
grangian function for the problem (20b) as follows:

Lρ({Zk}, {Wkj}, {Ωkj l}) =
N∑

k=1

(
‖Zk − ut

kut,T
k ‖2F

+ ρ
∑

j∈Nk

‖Zk −Wkj + Ωkj1/ρ‖2F

+ ρ
∑

j∈Nk

‖Wkj − Zj + Ωkj2/ρ‖2F
)

where ρ > 0 is a penalty parameter. The ADMM [11] is then
applied to solving the problem (20b) in a cyclic fashion by
minimizing Lρ with respect to the local variables {Zk} and
auxiliary variables {Wkj}, followed by a gradient ascent step
over the dual variables {Ωkj1 ,Ωkj2}. Following similar proce-
dure as [29], we obtain the iterations required per node k for
solving (20b)

{Z(l)
k } = arg min

{Zk }
Lρ({Zk}, {W (l−1)

kj }, {Ω(l−1)
kj l }) (21a)

W
(l)
kj =

1
2ρ

(Ω(l−1)
kj1 − Ω(l−1)

kj2 ) +
1
2
(Z(l−1)

k + Z
(l−1)
j ) (21b)

Ω(l)
kj1 = Ω(l−1)

kj1 + ρ(Z(l)
k −W

(l)
kj ) (21c)

Ω(l)
kj2 = Ω(l−1)

kj2 + ρ(W (l)
kj − Z

(l)
j ) ∀k ∈ V, j ∈ Nk . (21d)

The convergence of the ADMM method ensures the conver-
gence of the distributed iterations (21a)–(21d) to the optimal
value of (20b). Moreover, iterations (21a)–(21d) can be further
simplified, as stated in the following lemma.

Lemma 2: Initializing all the Lagrange multipliers to zeros
at every node, iterations (21a)–(21d) reduce to

Z
(l)
k =

ut
kut,T

k − 2Ω(l−1)
k + ρ

∑
j∈Nk

(Z(l−1)
k + Z

(l−1)
j )

1 + 2ρ|Nk |
(22a)

Ω(l)
k = Ω(l−1)

k + ρ/2
∑

j∈Nk

(Z(l)
k − Z

(l)
j ) ∀k ∈ V (22b)

where |Nk | is the number of neighboring nodes of node k,
and Ω(l)

k :=
∑

j∈Nk
Ω(l)

kj1 ,∀k ∈ V are the scaled local aggregate
Lagrange multipliers.

Proof: All the Lagrange multipliers are initialized to zeros,
i.e., Ω(0)

kj1 = Ω(0)
kj2 = 0p×p . Substituting (21b) into (21c) and

(21d), we have

Ω(l)
kj1 = Ω(l)

kj2 =
1
2
(Ω(l−1)

kj1 + Ω(l−1)
kj2 ) +

ρ

2
(Z(l)

k − Z
(l)
j ). (23)

By mathematical induction, we know that Ω(l)
kj1 = −Ω(l)

jk1 ,∀k ∈
V, j ∈ Nk . Therefore, the auxiliary variables W

(l)
kj can be ex-

pressed as

W
(l)
kj = (Z(l)

k + Z
(l)
j )/2. (24)

By substituting (24) into (23), we obtain the iteration (22b)
for the scaled local aggregate Lagrange multiplier Ωk . Taking
the derivative of the Lagrangian Lρ with respect to Zk , setting
the derivative to zero, and substituting (24) into the resulting
equation, we obtain the closed-form solution (22a) for the opti-
mization problem (21a). �

Note that the proposed distributed algorithm has a double-
loop structure, including the outer BCD iteration (20) and the
inner ADMM iteration (22). At every inner loop l, the com-
putation of (22) at each node k requires quantities {Zj}j∈Nk

of its neighboring nodes and hence the communication among
neighbors is needed. However, at every outer loop t, if the inner
loop iterations run multiple times till convergence, it may lead
to excessive communication overhead.

An inexact approach: To save energy resources and reduce
communication costs, alternatively, we introduce an inexact ap-
proach for computing (20b). First, the number of the inner iter-
ation is restricted to be a fixed small number L > 0. Second, the
initial states of variables at current inner iteration are set equal
to the last states at the previous inner iteration, i.e.,

Z
t,(0)
k = Z

t−1,(L)
k , Ωt,(0)

k = Ωt−1,(L)
k ∀k ∈ V. (25)

Third, the iterative result Z
t,(L)
k after L iterations is projected

onto a positive semidefinite cone for feasibility. For clarity, the
proposed inexact approach for solving (20b) is summarized in
Algorithm 2.

Remark 1: We can treat this approach as an online setting
of the ADMM, in which {Zk} are reevaluated after new “data
points” {ut

k} are revealed in every BCD round. We will show
that the inexact intermediate quantities {Zt

k} obtained after a
small number of iterations can also result in good enough esti-
mates of {Mt

k} and {ut+1
k }, and hence it saves communication

resources greatly compared with that using exact minimization.
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Algorithm 2: Solving (20b) via the Inexact ADMM
Method.

Input: Node k has computed the local parameter ut
k .

Setting Z
t,(0)
k = Z

t−1,(L)
k and Ωt,(0)

k = Ωt−1,(L)
k ,∀k ∈ V .

1: Set the penalty parameter ρ appropriately.
2: for l← 1, 2, . . . , L do
3: for all k = 1, . . . , N do
4: Compute Z

t,(l)
k via (22a).

5: Broadcast Z
t,(l)
k to all neighbors in Nk .

6: end for
7: for all k = 1, . . . , N do
8: Compute Ωt,(l)

k via (22b).
9: end for

10: end for
Output: Zt

k = ProjSp
+
(Zt,(L)

k ),Ωt
k = Ωt,(L)

k ,∀k ∈ V .

As data points {ut
k} getting stabilized with the BCD procedure,

the inexact quantities {Zt
k} among all nodes will gradually ap-

proach the exact one and the optimal minimizer can be obtained
asymptotically.

B. Local Computation of Mk in (20c)

Since εIp + Zt
k and (ηIp + Mk )−1 are positive definite, the

objective function in (20c) is strictly convex, and hence it ad-
mits a unique minimizer, which can be obtained via solving
an eigenvalue optimization problem summarized in Theorem 2
(subscript k is omit for notational simplicity).

Theorem 2: Given an arbitrary symmetric matrix Z ∈ Rp×p

in (20c), let Z = PΣPT be its eigendecomposition, where
P ∈ Rp×p is orthogonal, and Σ = diag(γ1 , . . . , γp) ∈ Rp×p

is diagonal with the eigenvalues on its main diagonal. Let
Σ = diag(σ∗1 , . . . , σ

∗
p) ∈ Rp×p , where {σ∗i }pi=1 is the optimal

solution to the following convex optimization problem:

min
{σi }

p∑

i=1

γi + ε

η + σi

s.t.
p∑

i=1

σi = h, 0 ≤ σi ≤ 1. (26)

Then, the global minimizer to (20c) is given by M ∗ = PΣPT ,
and the objective value in (26) is equal to that in (20c).

The proof of Theorem 2 is omitted since it is an existing
result in [21]. The problem (26) can be solved using a linear
time algorithm [21].

For clarity, the main steps for distributed learning of pre-
dictive structures from multiple tasks over sensor networks are
presented in Algorithm 3. Due to space limitations, we do not
provide the theoretical analysis.

C. Communication Complexity Analysis

We provide an analysis of the communication complex-
ity of the distributed algorithm. In each outer iteration, each
node transmits local estimates to its neighbors L times. Let T

Algorithm 3: The Distributed Multitask Learning (dMTL).
Input: Each node k has a small number (Nk ) of the
labelled data (xk ,yk ).
1: for t← 1, 2, . . . do
2: for all k = 1, . . . , N do
3: Compute ut

k in (20a) via Algorithm 1.
4: end for
5: Distributedly compute {Zt

k} in (20b) via Algorithm2.
6: for all k = 1, . . . , N do
7: Compute Mt

k in (20c) using Theorem 2.
8: end for
9: end for

Fig. 1. Network connection.

denote the total number of the outer iteration, then node k needs
to transmit O(TL|Nk |) messages in total, where |Nk | is the
number of its neighbors. Note that the less the inner iteration
is, the more the outer iteration is needed to get convergence. In
other words, the small value of L will lead to the large value of
T . From Algorithm 3, we see that a large number of the outer
iteration will lead to a large computational cost. In the following
simulations, we experimentally study the communication cost
with different number of the inner iteration L.

V. SIMULATIONS

In this section, the performance of the proposed dMTL algo-
rithm is evaluated via numerical simulations on both synthetic
and real-world datasets.

We first examine kinds of properties of the dMTL on the
synthetic data. We consider the case of regression and a ran-
domly generated sensor network with 20 nodes. The nodes
are randomly placed in a 2.5× 2.5 square, and the commu-
nication distance is taken as 0.8, as shown in Fig. 1. The
parameter uk of the node (task) k is selected from an r-
dimensional zero-mean Gaussian distribution N (0,Σ), where
the covariance matrix Σ is drawn from an r × r dimensional
Wishart distribution W(r, rI) with r degrees of freedom. To
these r-dimensional uk ’s, we add p− r irrelevant dimensions
which are exactly zero, i.e., uk = [uT

k ,0T
p−r ]

T . By construc-
tion, the multiple tasks among all nodes share an r-dimensional
predictive subspace. Note that we regenerate the covariance
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matrix Σ and the corresponding parameters {uk} for each inde-
pendent simulation. The outputs yk,i are computed from a noisy
linear function, yk,i = uT

k xk,i + ν, i = 1, 2, . . . , Nk , where ν
is zero-mean Gaussian noise with standard deviation equal to
0.05. The input data {xk,i} is randomly generated uniformly
from [0, 1]p . For simplicity, we assume that the numbers of
training samples among all nodes are equal. Unless otherwise
specified, the relevant dimension is set as r = 5, and the fea-
ture dimension is set as p = 20 in the following simulations.
Moreover, the mean-square-error loss function is used in this
regression problem.

For comparison, we also simulate the centralized multitask
learning (cMTL) algorithm, which alternately performs (16a)
and (16b), the corresponding noncooperative (non-coop) learn-
ing algorithm, which estimates each of tasks at each node in-
dependently using standard ridge regression, and the diffusion
LMS for multitask networks (MT-LMS) proposed in [15], which
promotes the similarity of parameter vectors via their distance
among neighboring nodes. Note that the ridge regression is
equivalent to (5) with α = 0, and its tradeoff parameter β is
determined via the cross validation.

All results below are averaged over 100 independent Monte
Carlo simulations with randomly generated samples. We employ
the mean-square deviation (MSD) of estimated parameter errors
as the performance measure.

A. Convergence Study

We first check the convergence of the dMTL with the inexact
approach, in which the number of inner iterations L is fixed
at 3, 6, and 9, respectively. For the dMTL and the cMTL, we
heuristically set the dimension of subspace h as 5 and then de-
termined the parameters α = 10−2 and η = 10−2 . We set the
step size of the MT-LMS as 0.2 and set its regularization param-
eter as 10−3 . We evaluated the MSD performance of the dMTL
with different number of training samples per node, and two
of them (Nk = 20, 40) are shown in Fig. 2, compared with the
cMTL, the noncooperative, and the MT-LMS algorithms. The
MSD learning curves are obtained by averaging all local MSDs
among nodes. Since the MT-LMS is an online algorithm, whose
iteration procedure is not the same as the BCD of the dMTL,
we draw a line to represent its steady-state MSD obtained after
10 000 iterations. Since the noncooperative algorithm has no
iteration procedure, we also draw a line to represent its steady-
state MSD. We observed that in all cases, the MSD of the dMTL
can converge to that of the cMTL even with a very few times
of inner iterations. We also observe that the dMTL gets con-
verged faster as the number of inner iterations L increases or
the number of the training samples per node increases.

Furthermore, by learning multiple tasks simultaneously
through cooperating with neighboring nodes in a multitask net-
work, the dMTL improves the estimation accuracy of each task
compared with the noncooperative algorithm, and this improve-
ment is quite big when the number of the training samples
per node is small. To further verify this point, we evaluated
the steady-state MSD performance of the dMTL with different
training sample sizes. As shown in Fig. 3, the steady-state MSD

Fig. 2. Transient network MSDs of the dMTL with different number of
inner iterations (L = 3, 6, 9), compared with the cMTL, the non-coop, and
the MT-LMS algorithms. (a) Nk = 20, (b) Nk = 40.

Fig. 3. Steady-state network MSDs versus the number of training
samples, compared with the cMTL, the non-coop, and the MT-LMS
algorithms.

of the dMTL gradually decreases as the training sample size in-
creases, and the dMTL can always achieve better performance
than the noncooperative and the MT-LMS algorithms. Espe-
cially when the training sample size is small, the dMTL makes
use of the relationship among multiple tasks and achieves much
better performance. We fixed the sample size as Nk = 20 in the
following simulations. From the above results, we see that the
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Fig. 4. Communication costs versus the network MSDs with different
number of inner iteration L.

MT-LMS algorithm performs even worse than the noncoopera-
tive algorithm. Note that the MT-LMS is an online algorithm so
it has extra misadjustment error, and it is designed for estimation
problem with parameter similarity characterized by clusters and
distances, so it is not suitable for this experiment. Moreover,
since the cMTL has the same steady-state performance as the
dMTL, we omit both the MT-LMS and cMTL in the following
steady-state simulations.

B. Communication Cost of the dMTL

We have analyzed the communication complexity of the
dMTL in the previous section. In this section, we experimen-
tally study the communication cost of the dMTL with different
number of inner iteration L. We use the same parameter settings
as previous experiment (Nk = 20). At node k, the communi-
cation cost after t outer iteration is tL|Nk |. We compute the
network communication cost by averaging all costs among all
nodes over networks. As shown in Fig. 4, to achieve the same
network MSD, the dMTL with the small value of L costs less
communication resources than those with the large values of L.
Thus, in practical applications, we can choose an appropriate
value of L to balance the communication cost and computation
time. We fixed L = 6 in the following simulations.

C. Subspace Selection

In this section, we study the effect of the dimension of the
shared feature subspace h on the estimation performance of the
dMTL. We fixed the dimension of feature space p = 20, and
test two cases that the value of the relevant dimension r is taken
as 5 and 10, respectively. We set the parameters α = 10−2 , and
η = 10−2 . For each case, we record the obtained steady-state
MSDs of estimated parameter errors with different dimensions
of the subspace (h < p). The result is presented in Fig. 5. In
both cases, we observe that when h gets close to the relevant
dimension r = 5 (or r = 10), the dMTL has a relatively lower
MSD. It is reasonable since the relevant dimension r is exactly
the dimension of the subspace by construction. In practice, it
is good enough to choose h = [5, 8] when r = 5, and choose
h = [10, 12] when r = 10. We also observe that when h gets
close to the feature dimension p = 20, the dMTL has the similar

Fig. 5. Steady-state MSDs versus the dimension of subspace h, as
the number of relevant variables r simultaneously changes.

performance with the noncooperative algorithm. The reason is
that when h = p, the common subspace becomes the original
predictive space, and no extra information can be extracted from
the multitask learning framework. We set r = 5 and h = 5 in
the following simulations.

D. Sensitivity Study

In this section, we study the effect of the parameters α and η on
the estimation performance of the dMTL. Recall that η = β/α,
where the regularization parameters α and β are used to tradeoff
the importance of two regularization components in (6). We first
set η = 10−3 , 10−2 , 10−1 , respectively; meanwhile, we vary α
in the range [10−6 , 100]. As shown in Fig. 6 (top), the dMTL
can achieve relatively better performance if α is set to some
value close to 10−2 no matter what value of η is. Too small or
too large value of α will result in relatively bad performance.
Nevertheless, we can choose an appropriate value of α via the
simple cross validation.

In the second experiment of this part, we set α =
10−3 , 10−2 , 10−1 , respectively; meanwhile, we vary η in the
range [10−8 , 102]. As shown in Fig. 6 (bottom), the dMTL is not
very sensitive to the parameter η. The dMTL can achieve better
performance when η is taken a relatively small value (over a
very wide range [10−8 , 10−2 ]) no matter what value of α is. We
observe similar results on other simulations. Note that η is the
ratio of β to α, a small value of η is corresponding to a small pro-
portion of the second component of the regularization function
(6). In the case that the number of training samples is limited
(Nk = 20 in this experiment), the multitask framework works
and the first component of the regularization (6) plays a major
role. Empirically, we set η = 10−2 in the following simulation.

E. Impact of the Number of Tasks (Nodes)

To test the effect of the number of jointly learned tasks,
we used the dMTL with N = 10, 20, 100 nodes (tasks). The
density of networks remains unchanged. To ensure this, the
communication distance still remains 0.8 and the square, in
which the nodes are randomly placed, is proportionally zoomed
in and out. In this experiment, we set r = 5, h = 5, α = 10−2 ,
and η = 10−2 ; meanwhile, we vary the feature dimension p in
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Fig. 6. Sensitivity study. (a) Steady-state MSDs versus the parameter
α in the dMTL; (b) steady-state MSDs versus the parameter η in the
dMTL.

Fig. 7. Steady-state MSDs versus the dimension of feature space p
with the fixed r = 5, as the number of tasks N simultaneously changes.

the range [5, 25]. For N = 10 and 20, the performance metrics
of the dMTL are averaged over randomly selected subsets of the
100 tasks, so that our estimates have comparable variance. Fig. 7
shows experimental results. With the increase of the number
of tasks, the performance of the dMTL improves. The reason
is that by learning more tasks simultaneously, more structure
information of the parameter space can be extracted from mul-
tiple tasks and the common subspace can be estimated more
accurately. Furthermore, as the number of irrelevant dimension
(p− r = [0, 20]) increases, the performance of the dMTL gets
a bit worse but its advantage over the noncooperative algorithm

Fig. 8. Sample images from (a) ORL face database and (b) Extended
Yale-B face database.

becomes more and more obvious. To explain this, note that with
the increasing of the number of irrelevant variables, the non-
cooperative algorithm needs more training samples per node to
obtain an acceptable estimate. Meanwhile, the dMTL makes use
of the structure information from multiple tasks and can cover
the shortage of training samples in some extent.

F. Classification of Real Data

In this section, we examine the dMTL on the two real-world
datasets. In many practical image processing applications in a
sensor network, the sensor node equipped with tiny cameras
often has a small number of image samples. Thus, the image
classification task executed at a single node may has a poor
performance. In this case, a multitask network can be used to
improve the performance of the classifier at each node. To sim-
ulate the above scenario, we use the proposed dMTL algorithm
for cooperatively performing the image classification tasks in
a multitask network using two real-world datasets: Olivetti Re-
search Laboratory (ORL) database1 and Extended Yale Face-B
database.2 The ORL database of Faces contains ten different
images of each of 40 distinct subjects. For some subjects, the
images were taken at different times, varying the lighting, fa-
cial expressions, and facial details. The extended Yale-B face
database contains 16 128 images of 38 human subjects under
9 poses and 64 illumination conditions. We choose the frontal
pose and use all the images under different illuminations, thus
we get 64 images per individual. Some sample images are shown
in Fig. 8. All images were manually aligned, cropped, and then
resized to 32× 32 pixels, with 256 gray levels per pixel. Each
image is represented by a 1024-dimensional vector in the image
space. We employ the misclassification rate (test error rate) as
the performance measure. Moreover, the modified Huber loss
function is used in this classification problem.

We examine the dMTL with different number of nodes (tasks)
at N = 10, 20, 40, 60, 80, 100, respectively. The density of net-
works is kept the same as the previous experiment. We set
L = 6, h = 4, η = 10−3 , and α = 10−3 for the ORL database
(α = 10−2 for the Extended Yale-B database). For each simula-
tion, each node performs a two-class image classification task,

1http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html
2http://vision.ucsd.edu/∼leekc/ExtYaleDatabase/ExtYaleB.html
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TABLE I
PERFORMANCE COMPARISONS ON TWO REAL-WORLD DATASETS WITH

DIFFERENCE NUMBER OF NODES (TASKS)

Error Rates (mean ± std-dev%)

ORL face database Extended Yale-B face

N non-coop dMTL non-coop dMTL

10 15.13 ± 5.86 14.39 ± 5.81 8.10 ± 1.82 6.37 ± 1.82
20 15.27 ± 4.69 14.55 ± 4.67 7.89 ± 1.28 6.41 ± 1.16
40 15.04 ± 3.12 14.30 ± 3.08 7.96 ± 0.87 6.30 ± 0.86
60 15.02 ± 2.41 14.25 ± 2.37 8.02 ± 0.71 6.47 ± 0.61
80 15.15 ± 2.24 14.41 ± 2.23 8.04 ± 0.71 6.39 ± 0.58
100 15.31 ± 2.12 14.59 ± 2.11 8.01 ± 0.64 6.39 ± 0.47

in which two subjects are randomly selected from 40 (or 38)
distinct subjects. We set the training and test ratio at 2:8 and
record the averaged test error rate of the dMTL over all nodes
(tasks). The final test error rate is averaged over 100 indepen-
dent simulations. We compare the dMTL with the corresponding
noncooperative (non-coop) learning algorithm, which performs
each of tasks at each node independently using a linear classifier
with modified Huber loss function and l2-norm regularization.
As shown in Table I, no matter how many tasks (nodes) are per-
formed, the dMTL always has a relatively lower test error rate
than the corresponding noncooperative algorithm on both of the
two face databases. Especially on the Extended Yale-B database,
the improvement is remarkable. Note that the classified subjects
among all nodes are different, and, hence, the decision hyper-
planes of the tasks are also different from each other. Thus, the
overlap of hypothesis subspaces among all nodes may be quite
small. Nevertheless, our proposed dMTL can still make use of
the structure information to cover the shortage of the training
samples and improves the generalization performance of the
linear classifier at each node.

VI. CONCLUSION

Consider the case that each node in a network has different
estimation task, and assuming all tasks share a common feature
subspace, we formulated the dMTL framework. Based on the
BCD method and the inexact ADMM technique, we derived
a dMTL algorithm, which is computationally inexpensive and
energy saving owing to the use of the inexact approach. Numeri-
cal simulations demonstrated that the proposed dMTL algorithm
can converge to its centralized counterpart and outperforms the
corresponding noncooperative learning algorithm.
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