2021.9 - present
Principal Engineer, Data Intelligence Innovation Lab, Huawei Cloud
Building a trustworthy, controlable LLM-driven data copilot, which is really really usefully for business analytics and decision making.
2018.7 - 2021.8
Algorithm Engineer II, Alibaba DAMO Academy.
Solving decision and prediction problems by Bayesian/causal inference, pricing/traffic/power grid optimization, such as sales forecasting, dynamic pricing, traffic control.
2013.9 - 2018.6
Ph.D, Colleage of ISEE, Zhejiang University
statstical machine learning, variational Bayesian inference, distributed optimization. My adviser is Chunguang Li.
Summer 2012
C/C++ Engineer Internship, State Street Corp, Hangzhou
Maintenance and Development for Princeton Financial Systems.
2009.9 - 2013.6
Bachelor's Degree, Computer Science & Automation, Zhejiang University of Technology
Double major in Computer Science and Automation. My adviser is Shengyong Chen.
Biography. I am currently a principal engineer at Huawei cloud working on building a LLM-driven data copilot. Before that, I am a researcher at Alibaba DAMO Academy foucs on solving decision and prediction problems. I received PhD from Zhejiang University under the supervision of Prof. Chunguang Li work on distributed Bayesian variational inference, and BS degree from Zhejiang University of Technology.

Research interests. Devote all effects to making the large language model truly capable of reasoning, includes logical, math, code, causal reasoning. To achieve this aim, I'm interesting in super alignment, test-time compute, reward learning and world model.

Publications

List of papers on Google scholar.


Junhao Hua, Ling Yan, Huan Xu, Cheng Yang, Markdowns in E-commerce Fresh Retail: A Counterfactual Prediction and Multiple-Period Optimization Approach, 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD'21). [arxiv]


Kui Zhao, Junhao Hua, Ling Yan, Qi Zhang, Huan Xu, Cheng Yang, A Unified Framework for Marketing Budget Allocation, 25th ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD'19). [arxiv]


Junhao Hua, Chunguang Li, Distributed Variational Bayesian Algorithms for Extended Object Tracking, unsubimitted, 2019. [arxiv]


Junhao Hua, Chunguang Li, Distributed Robust Bayesian Filtering for State Estimation, IEEE Transactions on Signal and Information Processing over Networks, vol. 5, no. 3, pp.428-441, Sept 2019. [link]


Junhao Hua, Chunguang Li, Distributed Jointly Sparse Bayesian Learning with Quantized Communication, IEEE Transactions on Signal and Information Processing over Networks, Vol. 4, no. 4, Dec 2018.


Junhao Hua, Chunguang Li, Hui-Liang Shen, Distributed Learning of Predictive Structures from Multiple Tasks Over Networks, IEEE Transactions on Industrial Electronics, vol. 64, no.5, pp.4246-4256, May 2017.


Junhao Hua, Chunguang Li, Distributed Variational Bayesian Algorithms over Sensor Networks, IEEE Transactions on Signal Processing, vol.64, no.3, pp.783-798, Feb. 2016.


Distributed Learning of Predictive Structures from Multiple Tasks Over Networks
Junhao Hua, Chunguang Li, Hui-Liang Shen
IEEE Transactions on Industrial Electronics(TIE, ZJU-TOP100), vol. 64, no.5, pp.4246-4256, May 2017.
We concerned with the problem of distributed multitask learning over networks, which aims to simultaneously infer multiple node-specific parameter vectors in a collaborative manner. In this work, we implicitly model the similarity of parameter vectors by assuming that the parameter vectors share a common low-dimensional predictive structure on hypothesis spaces, which is learned using the available data in networks. A distributed structure learning algorithm for the in-network cooperative estimation problem is derived based on the block coordinate descent method integrating with the inexact ADMM technique.
Distributed Variational Bayesian Algorithms over Sensor Networks
Junhao Hua, Chunguang Li
IEEE Transactions on Signal Processing (TSP, SCI-TOP), vol.64, no.3, pp.783-798, Feb. 2016.
We propose two novel distributed VB algorithms for general Bayesian inference problem, which can be applied to a very general class of conjugate-exponential models. In the first approach, the global natural parameters at each node are optimized using a stochastic natural gradient that utilizes the Riemannian geometry of the approximation space, followed by an information diffusion step for cooperation with the neighbors. In the second method, a constrained optimization formulation for distributed estimation is established in natural parameter space and solved by ADMM. An application of the distributed inference/estimation of a Bayesian Gaussian mixture model is then presented, to evaluate the effectiveness of the proposed algorithms.

Talks

2016 Nov: Talk at SIIP 2016 seminar, ZJU: Distributed variational Bayesian Algorithm in Networked System (in chinese) [slides].
2015 Jan: SIIP Group Talk: An Introduction to Transfer Learning [slides].
2014 Oct: SIIP Group Talk: Privacy Preserving Regression [slides].
2014 Oct: SIIP Group Talk: Vertically Partitioned Data [slides].
2014 Jul: SIIP Group Talk: Zero-Determinant Strategies [slides].
2014 Apr: Talk at Course of "Image & Video Analysis": Action Recognition & Categories via Spatial-Temporal Features [slides].
2014 Mar: Talk at csmath (2014-2015) course: A Tutorial on Variational Bayes [slides].
2013 Sep: SIIP Group Talk: Recursive parameter estimation and inference with incomplete data – Recursive EM & VB [slides].
2013 Jun: Undergraduate thesis defense: Brain MRI Segmentation based on Variational Bayesian methods [slides].
2012 Nov: SIIP Group Talk: Distributed Image Processing: Camera Networks, CV algorithms and Decentralized Multicamera Tracking [slides].

Projects

Action Recognition & Categories via Spatial-Temporal Features
Author: Junhao Hua, Shangyao, Lin
2014 April
This project consider this problem of recognizing and localizing multiple actions in long and complex video sequences containing multiple motions. Inspired by the previous works by Juan Niebles et al, 2008, we use the "bag of word" represetations for action recogntion. We first extract the spatio-temporal features (interest points), then construct the codebook (a set of words) by clustering of interest points using k-means algorithm. Then, the action categories can be infered by using unsupervised learning such as pLSA or LDA learned by the MCMC/variational inference. The hierarchal structure can be written as: document (video) - words (by clustering of interest points) - topic( types of actions). In this project, we simply use the supervised algorithms (such as KNN, SVM) to classify each word in every frame. For classifying multiple types of actions in a single video, we propose a simply algorithm called 'voting', to vote the top-N topics each frame/image is likely to have. This simple method can achieve the aim of multiple actions recogintion. Thanks to Piotr's Computer Vision Matlab Toolbox, the project is implemented by MATLAB.
show more
Action Recognition & Categories via Spatial-Temporal Features
Author: Junhao Hua, Shangyao, Lin
2014 April
This project consider this problem of recognizing and localizing multiple actions in long and complex video sequences containing multiple motions. Inspired by the previous works by Juan Niebles et al, 2008, we use the "bag of word" represetations for action recogntion. We first extract the spatio-temporal features (interest points), then contruct the codebook (a set of words) by clustering of interest points using k-means algorithm. Then, the action categories can be infered by using unsupervised learning such as pLSA or LDA learned by the MCMC/variational inference. The hierarchal structure can be written as: document (video) - words (by clustering of interest points) - topic( types of actions). In this project, we simply use the supervised algorithms (such as KNN, SVM) to classify each word in every frame. For classifying multiple types of actions in a single video, we propose a simply algorithm called 'voting', to vote the top-N topics each frame/image is likely to have. This simple method can achieve the aim of multiple actions recogintion. Thanks to Piotr's Computer Vision Matlab Toolbox, the project is implemented by MATLAB.

Awards

2021年11月 国家电网调控人工智能创新大赛“电网运行组织智能安排“赛道冠军 [link]
2020年11月 获得阿里巴巴2020年双十一卓越贡献奖 - 尖峰奖
2018年07月 浙江大学优秀研究生毕业生
2016年12月 浙江大学博士研究生国家奖学金
2013年06月 浙江工业大学优秀本科毕业生
2011年 浙江工业大学一等奖学金
2010 & 2012年 浙江工业大学二等奖学金
2011年11月 高教社杯全国大学生数学建模竞赛本科组二等奖
2011年05月 浙江省大学生高等数学(微积分)竞赛工科类一等奖
2010年12月 第二届全国大学生数学竞赛浙江赛区一等奖

Misc

Address: Hangzhou, Zhejiang, China.
Emails: huajh7 -at- gmail.com (replace -at- by @)
Last update:
  • 16 Nov. 2024